Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Spectroscopy

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 174

Full-Text Articles in Chemistry

Cpm-8 Europa Unveiled: A Multi-Wavelength Analysis, Trinity A. Ward, Michelle Deady Apr 2024

Cpm-8 Europa Unveiled: A Multi-Wavelength Analysis, Trinity A. Ward, Michelle Deady

SC Upstate Research Symposium

This study is an analysis of the compositional structure of Jupiter’s icy moon, Europa, by utilizing multi-wavelength spectroscopy. The objective of this study is to enhance our understanding of Europa’s compositional and potential biological characteristics.

Spectral data was obtained from various space missions and instruments. We are looking at imaging and spectroscopy-focused instruments RALPH, LORRI, LEISA, ALICE, and MVIC which were all part of the New Horizons spacecraft that launched in 2006. The data collected was from the Jupiter fly-by in February-March 2007.

This project sets the tone for the year with the upcoming Europa Clipper mission by NASA, set …


Synthesis And Characterization Of Acetaminophen-Derived Nanoparticles: A Novel Approach To Inhibit Fibril Formation, Hannia Elena Mendoza-Dickey Dec 2023

Synthesis And Characterization Of Acetaminophen-Derived Nanoparticles: A Novel Approach To Inhibit Fibril Formation, Hannia Elena Mendoza-Dickey

Open Access Theses & Dissertations

In the realm of nanotechnology, nanoparticles (NPs), have garnered significant notoriety in recent scientific research due to their unique physical and chemical properties, such as fluorescence emissions, nanoscale dimensions (typically <1000 nm), ease of surface modification, and biocompatibility. Nanoparticles have shown their potential across a variety of areas, including advanced industrial applications and cutting-edge biomedical research. Considering their cost-effective synthesis, they have shown promise as therapeutic agents for a variety of bioimaging and biomedical applications. This thesis describes the synthesis and detailed analysis of acetaminophen-derived nanoparticles. Techniques such as Dynamic Light Scattering (DLS), Thioflavin T (THT) assay, Attenuated Total Reflectance Infrared Spectroscopy (ATR-IR), 1H NMR spectroscopy, and Ultraviolet-Visible Spectroscopy (UV-VIS) were utilized for structural and functional assessments. Acetaminophen derived nanoparticles (ANPs) exhibit potential to hinder the amyloidogenic conversion of soluble amyloid-forming proteins into their toxic form. The novelty of this research focuses on the utilization of chemical structures capable of traversing the Blood Brain Barrier (BBB) to mitigate xenotoxicant-induced neuronal damage, a notable contributor to neurodegenerative disorders. This thesis describes the synthesis and characterization of acetaminophen derived-nanoparticles (ANPs). Our nanoparticles possess anti-amyloidogenic properties as evidenced by their ability to disrupt in the soluble-to-toxic trajectory of HEWL. The prevalence and evolution of amyloid fibrils are consistent features in the pathology of neurodegenerative diseases such as Parkinson's disease (PD), Alzheimerâ??s Disease (AD), and Huntingtonâ??s Disease (HD), as well as metabolic disorders like Type 2 diabetes (T2D). The relationship between amyloidogenic pathways and these disorders highlights the imperative for enhanced understanding and the formulation of specific therapeutic interventions.


Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson Nov 2023

Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson

USF Tampa Graduate Theses and Dissertations

Porphyrins are a group of heterocyclic macrocycles that play crucial roles in various biological processes such as electron transfer, catalysis, and sensing. Hemoglobin, which carries oxygen in the blood of mammals, and chlorophyll, which drives photosynthesis in plants and algae, are both porphyrins. The ability of porphyrins to bind metal ions and their unique electronic and photophysical properties make them an excellent platform for designing functional materials for various applications, often drawing inspiration from their function in nature. Metal-organic frameworks (MOFs) are a class of porous materials that have been extensively studied in recent years due to their high surface …


Research Instrumentation Center (Ric), Ryan Hilger, Purdue University Office Of Research Aug 2023

Research Instrumentation Center (Ric), Ryan Hilger, Purdue University Office Of Research

University Research Core Facility Boilerplate Descriptions

No abstract provided.


High Resolution Intracavity Laser Absorption Spectroscopy Of Transition Metal-Containing Diatomic Molecules, Kristin Bales Jul 2023

High Resolution Intracavity Laser Absorption Spectroscopy Of Transition Metal-Containing Diatomic Molecules, Kristin Bales

Dissertations

Three transition metal-containing diatomic molecules have been studied using intracavity laser spectroscopy. Many of the transitions were recorded using a Fourier-transform spectrometer for detection, allowing collection at Doppler-limited resolution for the gas phase molecules. Several vibrational bands in two electronic transition systems of tantalum fluoride (TaF) have been analyzed, and new molecular constants provided. Transitions involving six electronic states of tungsten sulfide (WS) have been analyzed, with new and updated constants provided, including a deperturbation analysis of three vibrational bands in two of the states. Finally, a fresh perspective on two electronic states of tungsten oxide (WO) included a deperturbation …


Analysis Of Polymer-Coated Bullets Using Spectroscopic Methods, Liana R. Albano Jun 2023

Analysis Of Polymer-Coated Bullets Using Spectroscopic Methods, Liana R. Albano

Student Theses

Polymer-coated bullets have gained popularity because they can reduce the user’s exposure to heavy metals in the ammunition. The synthetic jacket, which surrounds the lead core, is advantageous because it prevents metal-on-metal contact between the bullet and the bore. A challenge for firearms identification is that polymer-coated bullets do not retain unique markings that can be used to identify the gun, the way standard metal-coated bullets do. However, metal-coated bullets will result in a similar challenge if the bullet is too deformed once it is recovered. Another issue is that the composition of the polymer coating was never disclosed by …


Determining Bond Strengths And Dissociation Dynamics Of Diatomic Metal-Containing Ions By Photofragment Imaging, Schuyler P. Lockwood Apr 2023

Determining Bond Strengths And Dissociation Dynamics Of Diatomic Metal-Containing Ions By Photofragment Imaging, Schuyler P. Lockwood

Doctoral Dissertations

Studies of simple metal ion – ligand complexes have primarily focused on understanding their roles in activating C-H and C-C bonds. However, data are often lacking on the fundamental properties of these species, which can have unusual bond orders and cluttered electronic structures with many states of multi-reference character, complicating their treatment in theoretical studies. Experimental work determining high-precision bond energies, ground state identities and excited state dynamics of a wider variety of metal-containing ions is needed to establish a robust set of well-characterized benchmark molecules. This work describes studies of the energetics and dynamics of several MX+ species, …


Ultrasound-Assisted Air-Jet Spinning Of Silk Fibroin-Soy Protein Nanofiber Composite Biomaterials., Futian Yang, Fang Wang, Janine Mazahreh, Xiao Hu Feb 2023

Ultrasound-Assisted Air-Jet Spinning Of Silk Fibroin-Soy Protein Nanofiber Composite Biomaterials., Futian Yang, Fang Wang, Janine Mazahreh, Xiao Hu

Faculty Scholarship for the College of Science & Mathematics

Ultrasound utilizes a non-radiation technology that can meet modern standards to gain access to cheap, reliable and sustainable modern energy. Ultrasound technology can be implemented in the field of biomaterials for its exceptional potential in controlling the shape of nanomaterials. This study presents the first example of the production of soy and silk fibroin protein composite nanofibers in various ratios via combining ultrasonic technology with air-spray spinning. Characterization of ultrasonic spun nanofibers was performed by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric (TG) analysis, water contact angle, water retention, enzymatic …


Synthesis And Characterization Of Mixed Ligand Complexes Of Ruthenium(Ii) Containing 2,2’-Bipyridine And 3,3’-Dimethyl-1,1’- Methylenebisimidazolium Ligands; A New Synthetic Approach, Matthew Schneider Jan 2023

Synthesis And Characterization Of Mixed Ligand Complexes Of Ruthenium(Ii) Containing 2,2’-Bipyridine And 3,3’-Dimethyl-1,1’- Methylenebisimidazolium Ligands; A New Synthetic Approach, Matthew Schneider

Theses and Dissertations

Research into solar cells has been prioritized given the global demand for better renewable energy technologies. This demand is a result of the long-term use of fossil fuels, which generates significant pollution in highly populated urban areas. One potential solar cell technology is the dye-sensitized solar cell (DSSC). This kind of solar technology utilizes organometallic dyes to expand the types of wavelengths solar cells can use to generate electricity.12 Ruthenium(II) metal complexes of this type have been investigated heavily for this purpose.13,14,36 The main reasoning behind this is the metal-to-ligand charge-transfer (MLCT) phenomenon that such complexes exhibit. MLCT has often …


Infrared Spectra Of Small Radicals For Exoplanetary Spectroscopy: Oh, Nh, Cn, And Ch: The State Of Current Knowledge, Svatopluk Civiš, Adam Pastorek, Martin Ferus, Sergei N. Yurchenko, Noor-Ines Boudjema Jan 2023

Infrared Spectra Of Small Radicals For Exoplanetary Spectroscopy: Oh, Nh, Cn, And Ch: The State Of Current Knowledge, Svatopluk Civiš, Adam Pastorek, Martin Ferus, Sergei N. Yurchenko, Noor-Ines Boudjema

Chemistry & Biochemistry Faculty Publications

In this study, we present a current state-of-the-art review of middle-to-near IR emission spectra of four simple astrophysically relevant molecular radicals—OH, NH, CN and CH. The spectra of these radicals were measured by means of time-resolved Fourier transform infrared spectroscopy in the 700–7500 cm−1 spectral range and with 0.07–0.02 cm−1 spectral resolution. The radicals were generated in a glow discharge of gaseous mixtures in a specially designed discharge cell. The spectra of short-lived radicals published here are of great importance, especially for the detailed knowledge and study of the composition of exoplanetary atmospheres in selected new planets. Today, …


Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter Jan 2023

Ultrasensitive Tapered Optical Fiber Refractive Index, Erem Ujah, Meimei Lai, Gymama Slaughter

Electrical & Computer Engineering Faculty Publications

Refractive index (RI) sensors are of great interest for label-free optical biosensing. A tapered optical fiber (TOF) RI sensor with micron-sized waist diameters can dramatically enhance sensor sensitivity by reducing the mode volume over a long distance. Here, a simple and fast method is used to fabricate highly sensitive refractive index sensors based on localized surface plasmon resonance (LSPR). Two TOFs (l = 5 mm) with waist diameters of 5 µm and 12 µm demonstrated sensitivity enhancement at λ = 1559 nm for glucose sensing (5-45 wt%) at room temperature. The optical power transmission decreased with increasing glucose concentration due …


S-Type Stars: Line List For The A²Π-X²Σ⁺ Band System Of Lao, P. F. Bernath, R. Dodangodage, J. Liévin Jan 2023

S-Type Stars: Line List For The A²Π-X²Σ⁺ Band System Of Lao, P. F. Bernath, R. Dodangodage, J. Liévin

Chemistry & Biochemistry Faculty Publications

LaO bands are found in the spectra of cool S-type stars. The bands of the A2Π–X2Σ+ transition with v' ⩽ 3 and v'' ≤ 4 are rotationally analyzed, providing spectroscopic constants for the A2Π state. Line strengths are calculated using an ab initio transition dipole moment function, and radiative lifetimes for the A2Π state have also been computed. A line list for the A2Π–X2Σ+ transition of LaO is provided and can be used to determine LaO stellar abundances.


Enhancing The Conformational Stability Of The Cl-Par-4 Tumor Suppressor Via Site-Directed Mutagenesis, Samjhana Pandey, Krishna K. Raut, Andrea M. Clark, Antoine Baudin, Lamya Djemri, David S. Libich, Komala Ponniah, Steven M. Pascal Jan 2023

Enhancing The Conformational Stability Of The Cl-Par-4 Tumor Suppressor Via Site-Directed Mutagenesis, Samjhana Pandey, Krishna K. Raut, Andrea M. Clark, Antoine Baudin, Lamya Djemri, David S. Libich, Komala Ponniah, Steven M. Pascal

Chemistry & Biochemistry Faculty Publications

Intrinsically disordered proteins play important roles in cell signaling, and dysregulation of these proteins is associated with several diseases. Prostate apoptosis response-4 (Par-4), an approximately 40 kilodalton proapoptotic tumor suppressor, is a predominantly intrinsically disordered protein whose downregulation has been observed in various cancers. The caspase-cleaved fragment of Par-4 (cl-Par-4) is active and plays a role in tumor suppression by inhibiting cell survival pathways. Here, we employed site-directed mutagenesis to create a cl-Par-4 point mutant (D313K). The expressed and purified D313K protein was characterized using biophysical techniques, and the results were compared to that of the wild-type (WT). We have …


Developing Carbon Quantum Dots As A Luminescent Material And Revisiting Ecl And Led Absolute Measurement Methods, Jonathan Ralph Adsetts Nov 2022

Developing Carbon Quantum Dots As A Luminescent Material And Revisiting Ecl And Led Absolute Measurement Methods, Jonathan Ralph Adsetts

Electronic Thesis and Dissertation Repository

Luminescent materials play increasingly important roles in our lives. Improvements in these materials’ quantum efficiencies (QEs), costs and toxicity can greatly reduce the power consumption, price and environmental damage to the planet, respectively. Carbon quantum dots (CQDs) and luminescent materials exhibiting thermally activated delayed fluorescence (TADF) are two interesting materials in these aspects. Furthermore, measurements on electrochemiluminescence (ECL) and electroluminescence of these luminescent materials can quickly evaluate their performance for many applications. In this thesis, controlled CQD syntheses are revealed beneficial to luminescent materials applications. Their film ECL demonstrated relatively stable anionic and cationic radicals leading to high emission at …


Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales Sep 2022

Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales

Dissertations, Theses, and Capstone Projects

For many years, atomic point-defects have been readily used to tune the bulk properties of solid-state crystalline materials, for instance, through the inclusion of elemental impurities (doping) during growth, or post-processing treatments such as ion bombardment or high-energy irradiation. Such atomic point-defects introduce local ‘incompatible’ chemical interactions with the periodic atomic arrangement that makes up the crystal, resulting for example in localized electronic states due to dangling bonds or excess of electrons. When present in sufficient concentrations, the defects interact collectively to alter the overall bulk properties of the host material. In the low concentration limit, however, point-defects can serve …


Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms Aug 2022

Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms

Doctoral Dissertations

Complex chalcogenides provide an important platform to explore the interplay between structure, charge, and spin across pressure-induced phase transitions. Where much of the previous research has been focused on tuning these materials towards the single-layer limit, we instead explore the modification of bond lengths and bond angles under compression. In the first project we revealed piezochromism in MnPS3. We combined high pressure optical spectroscopy and first-principles calculations to analyze the dramatic color change (green → yellow → red → black) that takes place as the charge gap shifts across the visible and into the near infrared region, moving …


Symmetry Progression And Possible Polar Metallicity In Nips3 Under Pressure, Nathan Harms, Takahiro Matsuoka, Subhasis Sanmanta, Amanda J. Clune, Kevin A. Smith, Amanda V. Haglund, Erxi Feng, Huibo Cao, Jesse S. Smith, David Mandrus, Heung-Sik Kim, Zhenxian Liu, Janice L. Musfeldt Jun 2022

Symmetry Progression And Possible Polar Metallicity In Nips3 Under Pressure, Nathan Harms, Takahiro Matsuoka, Subhasis Sanmanta, Amanda J. Clune, Kevin A. Smith, Amanda V. Haglund, Erxi Feng, Huibo Cao, Jesse S. Smith, David Mandrus, Heung-Sik Kim, Zhenxian Liu, Janice L. Musfeldt

Chemistry Publications and Other Works

van der Waals solids are ideal platforms for the discovery of new states of matter and emergent properties under external stimuli. Under pressure, complex chalcogenides like MPS3 (M = Mn, Ni, Co, V) host sliding and structural transitions, insulator-to-metal transitions, the possibility of an orbitally-selective Mott state, piezochromism, and superconductivity. In this work, we bring together diamond anvil cell techniques, infrared and Raman scattering spectroscopies, and X-ray diffraction with a detailed symmetry analysis and first-principles calculations to uncover a series of high-pressure phases in NiPS3. Remarkably, we find five different states of matter between ambient …


Monitoring Bacteria Cultures Using Near Infrared (Nir) Binary Spectronephelometry (Bsn), Raman Spectra And Principal Component Analysis (Pca), Steven Ortiz May 2022

Monitoring Bacteria Cultures Using Near Infrared (Nir) Binary Spectronephelometry (Bsn), Raman Spectra And Principal Component Analysis (Pca), Steven Ortiz

Dissertations - ALL

Current noninvasive methods cannot continuously and simultaneously monitor the concentrations of cells and media components that define the state of native bacterial cultures, because of changing turbidity. A new technique, binary spectronephelometry (BSN) has the same or better sensitivity and precision for population monitoring as optical density at 600nm (OD600), while simultaneously measuring metabolic processes. The BSN algorithm uses laser induced emission to probe mildly turbid media i.e., propagation of light occurs in the single scattering regime. A BSN "training set" associates a grid of elastic emission measurements, comprising Rayleigh and Mie scattering, and inelastic emission measurements, comprising fluorescence and …


The Exploration Of Small Molecules, Lanthanide Complexes, And Catalysis Using Electronic Structure Theory, Dynamics, And Machine Learning, Gavin Mccarver May 2022

The Exploration Of Small Molecules, Lanthanide Complexes, And Catalysis Using Electronic Structure Theory, Dynamics, And Machine Learning, Gavin Mccarver

Doctoral Dissertations

With the ever increasing availability of computational resources, more challenging chemical systems can be studied. Among these challenges are the rotational and vibrational spectra of diatomic molecules within spectroscopic accuracy, the environmental perturbations induced on a rotating water molecule, the prediction of free binding energies of lanthanide complexes using machine learning, and the study of catalytic mechanisms through a theoretical framework. High levels of electronic structure theory were combined with a rigorous treatment of either the anharmonic vibrational wave functions to study diatomic molecules or the rotational wave functions to study H2O-pH2 interactions. The former was initially …


Spectroscopic Measurements Of Meibum Compositional, Structural, And Functional Relationships To Elucidate The Role Of Meibum In Dry Eye., Anthony Chigozie Ewurum May 2022

Spectroscopic Measurements Of Meibum Compositional, Structural, And Functional Relationships To Elucidate The Role Of Meibum In Dry Eye., Anthony Chigozie Ewurum

Electronic Theses and Dissertations

The major aim of my dissertation was to investigate the etiology of dry eye disease which affects about 7 million people in the United States, causing symptoms that can lead to visual disturbance. Correlation between dry eye and an abnormal lipid layer of the tear film has been found. Tear film lipids originate mostly from the meibomian glands. Cholesteryl ester (CE) and Wax ester (WE) lipids make up most of the human meibum lipidome and the CE/WE ratio has been shown to decrease in patients with meibomian gland dysfunction. Model studies using synthetic CE and WE, although providing some insight, …


Approaches In Molecular Engineering To Optimize The Desired Properties Of Photoactive Molecules, Douglas Joseph Breen Apr 2022

Approaches In Molecular Engineering To Optimize The Desired Properties Of Photoactive Molecules, Douglas Joseph Breen

Chemistry and Chemical Biology ETDs

Within this dissertation, photochemical systems that bear significance to next-generation photonic materials and devices are explored. Notable advances in the design, synthesis, and characterization of three distinct groups of photoactive molecules are achieved through molecular design and spectroscopic analysis. First, novel ruthenium sulfoxide complexes bearing substituted phosphine ligands are found to provide extraordinary control over photoisomerization quantum yields. A comparison of these complexes reveals ground-state characteristics that are instrumental in this reactivity, while a novel spectroscopic technique provides rare structural evidence for an O-bonded metastable isomer. Ruthenium complexes bearing chelating carbene-sulfoxide ligands rapidly thermally revert from the O-bonded metastable isomer …


Infrared Investigation Of Lithium Ion Electrolytes: Characterization Of Structure And Dynamics Via Linear And Nonlinear Spectroscopy, Jeramie Christopher Rushing Feb 2022

Infrared Investigation Of Lithium Ion Electrolytes: Characterization Of Structure And Dynamics Via Linear And Nonlinear Spectroscopy, Jeramie Christopher Rushing

LSU Doctoral Dissertations

Lithium ion batteries are widely employed in energy storage, but the connection between the molecular interactions in their electrolytes and the macroscopic properties remains elusive. Across three vastly different electrolytes, speciation and dynamics were studied via linear and nonlinear infrared spectroscopy to shed light on this relationship. The impact of mixed solvation on ionic speciation was studied from the perspective of the anion, which revealed a significant energetic favorability for the formation of contact ion pairs in linear carbonate solvents over cyclic carbonates. Infrared spectroscopy and density functional theory calculations described a complete inversion of the speciation due to solvent …


Electron Spin Relaxation Of Nitroxide Spin Labels And Relaxation Processes, Thacien Ngendahimana Jan 2022

Electron Spin Relaxation Of Nitroxide Spin Labels And Relaxation Processes, Thacien Ngendahimana

Electronic Theses and Dissertations

MTSL is the nitroxide spin label that is most commonly used in site-directed spin labeling. However, due to rotation of its gem-dimethyl groups that average anisotropic interactions, Tm becomes short above about 70 K and this makes DEER experiments difficult at these temperatures. Strategies for decreasing spin echo dephasing and electron spin lattice relaxation rates are important for design of nitroxide spin labels and molecular qubits.

In searching for labels with longer Tm, new nitroxide spin labels devoid of gemdimethyl groups or with more rigid structures were synthesized at the University of Nebraska and pulsed EPR measurements …


Characterization Of The Ch Addition Product From Meta- And Ortho-Xylene + Ch Reaction And Direct Experimental Observation Of The Tetrabromine Cluster Br4 Using Synchrotron Photoionization Mass Spectrometry, Rory R. Mcclish Dec 2021

Characterization Of The Ch Addition Product From Meta- And Ortho-Xylene + Ch Reaction And Direct Experimental Observation Of The Tetrabromine Cluster Br4 Using Synchrotron Photoionization Mass Spectrometry, Rory R. Mcclish

Master's Theses

This thesis is centered on the use of a unique gas-phase spectroscopy technique to characterize products and elucidate reaction mechanisms. Experiments were carried out at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source located at the Lawrence Berkeley National Laboratory in Berkeley, CA. Computational work was performed on the scientific supercomputer at USF to supplement experimental findings. Chapter 1 contextualizes the work spurred in response to the deleterious interactions of anthropogenic emissions on Earth’s climate. Chapter 2 describes the theoretical manipulations foundational to the experimental design and interpretation. Chapter 3 delves into the physical details of the experimental …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky Oct 2021

Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky

Doctoral Dissertations

The spread of antibiotic resistant bacteria around the world has become a major public health issue, and it is essential that effective detection methods exist for identifying these organisms and preventing them from spreading throughout our food systems and into the environment. The goal of this research is to develop a novel analytical procedure that is capable of easily identifying antibiotic resistance in bacterial samples, and also provides more information about the biochemical characteristics of the bacteria and their responses to antibiotic exposure. Surface-enhanced Raman Spectroscopy (SERS), an analytical technique that uses light scattering to produce a spectrum based on …


3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown Oct 2021

3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown

Chemistry Faculty Publications

The past four decades have brought significant and increasingly rapid changes to the world of instrument design, fabrication, and availability due to the emergence of 3D printing, open-source code and equipment, and low-cost electronics. These, along with other technological advances represent a nexus in time ripe for the wide-spread production and availability of low-cost sophisticated scientific equipment. To that end, the design of a 3D printable and open-source, modular spectrometer is described. This specific instrument is distinctly different from others that have been reported in recent years in that it was designed outside of the “black box” paradigm of …


Spectral Analysis Of A New Electronic Transition Of Platinum Fluoride, Ptf, Carol Welch Sep 2021

Spectral Analysis Of A New Electronic Transition Of Platinum Fluoride, Ptf, Carol Welch

Undergraduate Research Symposium

The electronic landscape of platinum containing molecules has been the focus of numerous spectroscopic studies in recent years, because of the difficulty in describing electronic structure theoretically due to electronic correlations and relativistic effects. A collective effort by spectroscopitsts and theoreticians to investigate the diatomic molecule platinum fluoride, PtF, has included research such as developing potential energy diagrams and performing analyses on rotational transitions with microwave spectroscopy. One group observed electronic transitions of PtF using laser vaporization/reaction with jet free expansion and laser induced spectroscopy. A highly effective method for observing and analyzing electronic transitions of small, metal-containing molecules like …


Investigation Of The Interface Reactions Of Ion Selective Electrode Membranes Using Chromatographic And Spectroscopic Analyses Of Erbium(Iii) Tetraphenylporphyrin, Alexis Rae Miller Aug 2021

Investigation Of The Interface Reactions Of Ion Selective Electrode Membranes Using Chromatographic And Spectroscopic Analyses Of Erbium(Iii) Tetraphenylporphyrin, Alexis Rae Miller

MSU Graduate Theses

Ion selective electrodes (ISEs) are analytical sensors that monitor the interactions between an ionophore within a polymeric membrane and ions in various solutions. The sensitivity and selectivity of ISEs is directly related to the chemical components. One type of ionopohore utilized in ISEs are metalloporphyrins. Metalloporphyrins have unique binding characteristics, which make them useful in sensors. The polymeric membranes that are synthesized and used in ISEs consist of a metalloporphyrin complex, polyvinyl chloride, and ortho-nitrophenyl octyl ether. The membrane unique to this project contains erbium (III) tetraphenylporphyrin as the metalloporphyrin ionophore. Various analytical techniques were applied in the investigation …


A Project To Dye For : Differentiation Of Dyed And Non-Dyed Human Hairs Using Atr Ft-Ir Spectroscopy, Joseph John Greco May 2021

A Project To Dye For : Differentiation Of Dyed And Non-Dyed Human Hairs Using Atr Ft-Ir Spectroscopy, Joseph John Greco

Legacy Theses & Dissertations (2009 - 2024)

IR spectroscopy is widely utilized for forensic purposes due to the chemical fingerprint the method provides. ATR FT-IR spectroscopy is particularly advantageous because it allows for spectra to be collected quickly, accurately, and perhaps most importantly for forensics, non-destructively. Human hair is commonly collected at a crime scene, and further analyzed using DNA analysis and microscopy. However, these techniques have limitations. In the past ATR FT-IR spectroscopy has shown promise in the analysis of human hair for forensic purposes. In this study, the differentiation of undyed hair versus dyed hair classes of varying colors based on their IR spectra were …