Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Morphology

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 41

Full-Text Articles in Chemistry

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava Dec 2023

Microplate-Like Metal Pyrophosphate Engineered On Ni-Foam Towards Multifunctional Electrode Material For Energy Conversion And Storage, Rishabh Srivastava

Electronic Theses & Dissertations

High clean energy demand, dire need for sustainable development, and low carbon footprints are the few intuitive challenges, leading researchers to aim for research and development for high-performance energy devices. The development of materials used in energy devices is currently focused on enhancing the performance, electronic properties, and durability of devices. Tunning the attributes of transition metals using pyrophosphate (P2O7) ligand moieties can be a promising approach to meet the requirements of energy devices such as water electrolyzers and supercapacitors, although such a material’s configuration is rarely exposed for this purpose of study.

Herein, we grow …


Influence Of Soft Segment Structure, Hydrogen Bonding, And Diisocyanate Symmetry On Morphology And Properties Of Segmented Thermoplastic Polyurethanes And Polyureas, Emel Yilgör, İskender Yilgör Oct 2023

Influence Of Soft Segment Structure, Hydrogen Bonding, And Diisocyanate Symmetry On Morphology And Properties Of Segmented Thermoplastic Polyurethanes And Polyureas, Emel Yilgör, İskender Yilgör

Turkish Journal of Chemistry

A comprehensive review of the structure-morphology-property relations in segmented thermoplastic polyurethanes and polyureas (TPU) is provided. Special emphasis is given to the influence of the soft segment structure, polarity, and molecular weight, diisocyanate symmetry and the nature, extent, and strength of hydrogen bonding on the morphology and thermal and mechanical properties of TPUs. Experimental results obtained on composition-dependent TPU morphology and properties by various techniques were also compared by the morphology profiles generated by computational methods such as quantum mechanical calculations and molecular dynamics simulations


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Using Catalysis To Control The Morphology And Stiffness Of Shape Memory Poly(Isocyanurate-Urethane) (Pir-Pur) Aerogels, A. B.M. Shaheen Ud Doulah, Chandana Mandal, Hojat Majedi Far, Vaibhav A. Edlabadkar, Rushi U. Soni, Stephen Y. Owusu, Nicholas Leventis, Chariklia Sotiriou-Leventis Jan 2023

Using Catalysis To Control The Morphology And Stiffness Of Shape Memory Poly(Isocyanurate-Urethane) (Pir-Pur) Aerogels, A. B.M. Shaheen Ud Doulah, Chandana Mandal, Hojat Majedi Far, Vaibhav A. Edlabadkar, Rushi U. Soni, Stephen Y. Owusu, Nicholas Leventis, Chariklia Sotiriou-Leventis

Chemistry Faculty Research & Creative Works

A large array of anhydrous metal ions were tested as catalysts in the preparation of shape memory poly(isocyanurate-urethane) (PIR-PUR) aerogels from the reaction of 1,3,5-tris(6-isocyanatohexyl)-1,3,5-triazinane-2,4,6-trione (Desmodur N3300A: a well-known isocyanurate-based aliphatic triisocyanate) and triethylene glycol (TEG) in anhydrous acetonitrile. The reaction yielded wet gels that were dried into aerogels in an autoclave with supercritical fluid CO2. The catalytic activity was mostly identified among CH3CN-soluble salts (mainly chlorides) of third-row d-block elements from iron to zinc, group 13 elements from aluminum to thallium, as well as cadmium, bismuth, and tin. Tin (119Sn) NMR indicated that the metal ion complexes with TEG, …


Investigating The Effect Of Poly (Ε-Caprolactone) Nanofibers Scaffolds With Random, Unidirectionally, And Radially Aligned Morphologies On The Fibroblast Cell?S Attachment And Growth Behavior, Saeed Nezari, Mohammadamin Sarli, Ahmad Hivechi, Hajir Bahrami, Peiman B. Milan, Noorahmad Latifi, Fatemeh Latifi, Tayyeb Ghadimi, S. Mohammad Amin Haramshahi, Soheila Naderi Gharahgheshlagh Jan 2023

Investigating The Effect Of Poly (Ε-Caprolactone) Nanofibers Scaffolds With Random, Unidirectionally, And Radially Aligned Morphologies On The Fibroblast Cell?S Attachment And Growth Behavior, Saeed Nezari, Mohammadamin Sarli, Ahmad Hivechi, Hajir Bahrami, Peiman B. Milan, Noorahmad Latifi, Fatemeh Latifi, Tayyeb Ghadimi, S. Mohammad Amin Haramshahi, Soheila Naderi Gharahgheshlagh

Turkish Journal of Chemistry

In the last decade, significant progress in tissue engineering, repairing, and replacing organs has been achieved. The design and production of scaffolds for tissue engineering are one of the main areas which have attracted the researcher's interest. In this regard, electrospinning is one of the most popular methods of nanoscale scaffold similar to extracellular matrix production. This paper reports the fabrication of scaffolds consisting of radially aligned PCL nanofibers by utilizing a collector composed of a central point electrode and a peripheral ring electrode. The chemical and physical properties were compared using SEM, FTIR, XRD, and DSC experiments, as well …


Multifunctional Conductive Paths Obtained By Laser Processing Of Non-Conductive Carbon Nanotube/Polypropylene Composites, Federico Cesano, Mohammed Jasim Uddin, Alessandro Damin, Domenica Scarano Feb 2021

Multifunctional Conductive Paths Obtained By Laser Processing Of Non-Conductive Carbon Nanotube/Polypropylene Composites, Federico Cesano, Mohammed Jasim Uddin, Alessandro Damin, Domenica Scarano

Chemistry Faculty Publications and Presentations

Functional materials are promising candidates for application in structural health monitoring/self-healing composites, wearable systems (smart textiles), robotics, and next-generation electronics. Any improvement in these topics would be of great relevance to industry, environment, and global needs for energy sustainability. Taking into consideration all these aspects, low-cost fabrication of electrical functionalities on the outer surface of carbon-nanotube/polypropylene composites is presented in this paper. Electrical-responsive regions and conductive tracks, made of an accumulation layer of carbon nanotubes without the use of metals, have been obtained by the laser irradiation process, leading to confined polymer melting/vaporization with consequent local increase of the nanotube …


Synthesis And Evaluation Of Cellulose-Based, 1,2,3-Triazolium-Functionalized Polymerized Ionic Liquids: Thermal Transitions, Ionic Conductivities, And Morphological Properties, Rose J. Miller, Vanessa M. Smith, Stacey A. Love, Sarah M. Byron, David Salas-De La Cruz, Kevin M. Miller Jan 2021

Synthesis And Evaluation Of Cellulose-Based, 1,2,3-Triazolium-Functionalized Polymerized Ionic Liquids: Thermal Transitions, Ionic Conductivities, And Morphological Properties, Rose J. Miller, Vanessa M. Smith, Stacey A. Love, Sarah M. Byron, David Salas-De La Cruz, Kevin M. Miller

Faculty & Staff Research and Creative Activity

A series of 1,2,3-triazolium-functionalized cellulose derivatives were prepared using an azide–alkyne “click” cyclization strategy, followed by quaternization. As cellulose represents an inexpensive and sustainable biomacromolecule, the ability to functionalize the backbone with an ionic liquid and generate conductive materials is of great interest. Here, three different counteranions ([Br], [OTf], and [NTf2]) were employed to explore the interplay between thermal, conductive, and morphological properties using a diverse set of techniques including nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray scattering, and dielectric relaxation spectroscopy (DRS). Functionalization of native cellulose resulted in …


Effect Of Current Density On The Microstructure And Morphology Of The Electrodepositednickel Coatings, Amel Boukhouiete, Saliha Boumendjel, Nour-El-Houda Sobhi Jan 2021

Effect Of Current Density On The Microstructure And Morphology Of The Electrodepositednickel Coatings, Amel Boukhouiete, Saliha Boumendjel, Nour-El-Houda Sobhi

Turkish Journal of Chemistry

The aim of this research work was to study the effect of deposition current density on microstructure and surface morphology of electrodeposited nickel coatings. For this purpose, nickel deposits have been synthesized by direct current from Watts bath without additive, to limit the incorporation of pollutants resulting from surface adsorption or electro-activity of these compounds. Nickel deposits have been investigated by scanning electron microscopy and X-ray diffraction. Cyclic voltammetry was also used to gain information on the general behavior of the deposition. The optimum conditions of deposition were established and the influence of current density on the grain size, surface …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf May 2020

Investigation On The Morphology Of Charge-Transfer Complexes In Low Density Polyethylene, Wade Korf

Master's Theses

Fillers are used ubiquitously throughout the fields of polymer and material science to overcome many inherent limitations to polymeric materials (i.e. poor stiffness or strength) and to expand their potential applications. There is a need to develop controllable particle architectures to better understand fundamental structure-property relationships in particle reinforced polymer composites. Charge-transfer complexes (CTCs) can assemble in situ into various needle and dendritic shapes via simple fabrication processes and at low loading levels. In this study, the effect of tetrathiafulvalene (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ) CTC crystallites of various shapes and sizes on composite mechanical properties was investigated in an LDPE …


Atomic Force Microscopic Characterization Of Solid Electrolyte Interphase In Lithium Ion Batteries, Qing-Yu Dong, Yan-Li Chu, Yan-Bin Shen, Li-Wei Chen Feb 2020

Atomic Force Microscopic Characterization Of Solid Electrolyte Interphase In Lithium Ion Batteries, Qing-Yu Dong, Yan-Li Chu, Yan-Bin Shen, Li-Wei Chen

Journal of Electrochemistry

In recent years, the rapid growing in the electric vehicle market has raised higher requirement on the lithium-ion batteries (LIBs) performance towards energy density and safety. However, considering the successful development of LIBs techniques in the past 30 years, there is little room left for improving the LIBs performance on the aspects related to the electrode materials, battery structure design and production processes. It is important to pursue more comprehensive fundamental understanding in the entire system and working principle of LIBs. Solid electrolyte interphase (SEI), existing between the electrode material and the electrolyte, has been proved to be an important …


Facile One-Pot Synthesis Of Nico₂Se₄-Rgo On Ni Foam For High Performance Hybrid Supercapacitors, Bahareh Golrokh Amin, Jahangir Masud, Manashi Nath Nov 2019

Facile One-Pot Synthesis Of Nico₂Se₄-Rgo On Ni Foam For High Performance Hybrid Supercapacitors, Bahareh Golrokh Amin, Jahangir Masud, Manashi Nath

Chemistry Faculty Research & Creative Works

A facile, innovative synthesis for the fabrication of NiCo2Se4-rGO on a Ni foam nanocomposite via a simple hydrothermal reaction is proposed. The as-prepared NiCo2Se4-rGO@Ni foam electrode was tested through pxrd, TEM, SEM, and EDS to characterize the morphology and the purity of the material. The bimetallic electrode exhibited outstanding electrochemical performance with a high specific capacitance of 2038.55 F g-1 at 1 A g-1. NiCo2Se4-rGO@Ni foam exhibits an extensive cycling stability after 1000 cycles by retaining 90% of its initial capacity. A superior energy density …


Properties Of New York/New Jersey Harbor Sediments, K. W. Jones, Huan Feng, E. A. Stren, U. Neuhäusler, J. Osán, N. Marinkovic, Z. Song Nov 2019

Properties Of New York/New Jersey Harbor Sediments, K. W. Jones, Huan Feng, E. A. Stren, U. Neuhäusler, J. Osán, N. Marinkovic, Z. Song

Huan Feng

Sediments found in waterways around the world may contain toxic compounds of anthropogeilic origin that can harm the environment and human health. As a result, it is often necessary to remove them and find disposal methods that are environmentally and economically acceptable. Here, we report on results obtained in an experimental program to characterize the nature of the sediment contamination. The objective was to gain a better understanding of the properties of the sediments to develop better methods for understanding the fate and transport of the contaminants and for improving methods for their removal from the sediments. Our investigations made …


Influences Of Morphology And Nitrogen Doping On The Electrocatalytic Characteristics For Oxygen Reduction Reaction Of Nio/Rgo, Dong Liang, Heng-Yi Fang, Shuo Yao, Jie-Mei Yu, Zhao-Liang Zhang, Zhan-Kun Jiang, Xue-Ping Gao, Tai-Zhong Huang Oct 2019

Influences Of Morphology And Nitrogen Doping On The Electrocatalytic Characteristics For Oxygen Reduction Reaction Of Nio/Rgo, Dong Liang, Heng-Yi Fang, Shuo Yao, Jie-Mei Yu, Zhao-Liang Zhang, Zhan-Kun Jiang, Xue-Ping Gao, Tai-Zhong Huang

Journal of Electrochemistry

In this research, the reduced graphene oxide (rGO) supported sheet-like NiO (NiO/rGO) and spherical-like NiO (NiO/N-rGO) catalysts for oxygen reduction reaction (ORR) were prepared. The structures, morphologies and chemical states of the two catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical catalytic performance of the two catalysts for ORR were investigated by cyclic voltammetry (CV), Tafel, linear sweeping voltammetry (LSV), rotating disc electrode (RDE) and rotating ring disc electrode (RRDE) tests. Electrochemical results showed that the current density and onset potential (about 0.89 V) …


Model Pt-Re And Pt-Sn Surfaces For Heterogeneous Catalysis, Thathsara Deshani Maddumapatabandi Jul 2019

Model Pt-Re And Pt-Sn Surfaces For Heterogeneous Catalysis, Thathsara Deshani Maddumapatabandi

Theses and Dissertations

The dissertation is focused on understanding the growth, morphology and activity of model heterogeneous catalytic surfaces. Vapor deposited metal clusters on single crystal surfaces are well-defined systems that can be used to understand the growth, composition and activity relationships in commercial catalysts. A fundamental understanding of surface reactions is required in order to provide insight into the development of new catalytic materials. The model catalysts approach allows for systematic investigations due to excellent control over growth, composition and characterization under a carefully controlled ultrahigh vacuum (UHV) environment.

The nucleation, growth and chemical activity of monometallic and bimetallic Pt-Re clusters on …


Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee Jan 2019

Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee

Doctoral Dissertations

"The morphology of a material is intrinsically a qualitative property and in order to relate nanomorphology to synthetic conditions, it is necessary to express nano/micro-structure quantitatively. In this context, polyurea aerogels were chosen as a model system with demonstrated potential for rich nanomorphology and being guided by a statistical Design-of-Experiments model, a large array of materials (208) with identical chemical composition, but quite different nanostructures were prepared. By reflecting upon the SEM images, it was realized that our first pre-verbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity (Π), and the …


Influence Of Applied Potential And Metal Ion Concentraion On Metal Electrodeposition At Micron Gap Gold Electrodes, Krista Michel Riggins Jan 2019

Influence Of Applied Potential And Metal Ion Concentraion On Metal Electrodeposition At Micron Gap Gold Electrodes, Krista Michel Riggins

Online Theses and Dissertations

Zamborini and Coworkers developed, a simple, low cost, and highly parallel electrochemical approach for fabricating nano-scale (metal/metal) or molecular (metal/polymer or self-assembled monolayer (SAM)/metal) junctions that should be useful in preparing working sensors and molecular electronic devices. The fabrication of metal/metal junctions involves metal deposition on one set of electrodes (E1), where the metal grows and becomes connected to a second set of electrodes (E2) of an Au interdigitated array of electrodes with a 5 µm separation. However, when different metals were deposited, they deposited in different fashions. Ag grew in the form of wires and Palladium deposited in the …


Time-Dependent Efficiency Measurements Of Polymer Solar Cells With Dye Additives: Unexpected Initial Increase Of Efficiency, Kyle J. Bandaccari, Grace E. Chesmore, Mitchel Bugaj, Parisa Tajalli-Tehrani Valverde, Richard P. Barber Jr., Brian J. Mcnelis Apr 2018

Time-Dependent Efficiency Measurements Of Polymer Solar Cells With Dye Additives: Unexpected Initial Increase Of Efficiency, Kyle J. Bandaccari, Grace E. Chesmore, Mitchel Bugaj, Parisa Tajalli-Tehrani Valverde, Richard P. Barber Jr., Brian J. Mcnelis

Physics

We report the effects of the addition of two azo-dye additives on the time-dependent efficiency of polymer solar cells. Although the maximum efficiencies of devices containing different amounts of dye do not vary greatly over the selected concentration range, the time dependence results reveal a surprising initial increase in efficiency in some samples. We observe this effect to be correlated with a leakage current, although a specific mechanism is not yet identified. We also present the measured lifetimes of these solar cells, and find that variations in dye concentrations produce a small effect at most. Characterization of the bulk heterojunction …


Correlation Between The Structure And The Anticorrosion Barrier Properties Of Hybrid Sol–Gel Coatings: Application To The Protection Of Aa2024-T3 Alloys, Maikki Cullen, Muhammad Morshed, Mary O'Sullivan, Emma Mchugh, Brendan Duffy, Mohamed Oubaha Jan 2017

Correlation Between The Structure And The Anticorrosion Barrier Properties Of Hybrid Sol–Gel Coatings: Application To The Protection Of Aa2024-T3 Alloys, Maikki Cullen, Muhammad Morshed, Mary O'Sullivan, Emma Mchugh, Brendan Duffy, Mohamed Oubaha

Articles

Hybrid sol–gel materials have been extensively studied as viable alternatives to toxic chromate (VI)-based coatings for the corrosion protection of AA2024-T3 in the aerospace industry, due to the wide range of available chemistries they offer and the tremendous development potential of innovative functional coatings. However, so far, little work has been performed in identifying the effect of the employed chemistries on the structure and anticorrosion properties of the coatings. This work proposes to contribute to a better understanding of the relationship existing between the structure, morphology and anticorrosion properties of hybrid sol–gel coatings deposited on AA2024- T3 aluminium surfaces, the …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Preparation And Characterization Of Thermodynamically Controlled Polymer Nanocomposites, Jiadi Hou Dec 2015

Preparation And Characterization Of Thermodynamically Controlled Polymer Nanocomposites, Jiadi Hou

Masters Theses

The mechanical and physical properties of polymeric materials can be greatly improved by adding nanoscale additives. To mediate the dispersion of nanoparticles in polymers, it is often necessary to modify their surfaces to prevent aggregation. While polymer nanocomposites system consisting of homopolymer-grafted nanoparticles are well understood, copolymer-functionalized nanoparticles are less well understood but provide additional ways to alter dispersion through the use of chemically different comonomers. In this thesis, polystyrene nanocomposites blended with copolymer-grafted nanoparticles were prepared and studied. The particular comonomers used were methyl methacrylate and cyclohexyl methacrylate, which provides miscibility with polystyrene. Polymers with varying comonomer ratios were …


Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous Nov 2015

Morphology Evolution Mechanisms Of Low Band Gap Polymer-Based Photovoltaics, Sunzida Ferdous

Doctoral Dissertations

An optimal nanoscale phase separation between the donor (generally, a conjugated polymer) and the acceptor (generally, a fullerene derivative) materials is one of the major requirements for obtaining high efficiency organic photovoltaic (OPV) device. Recent methods of controlling such nanostructure morphology in a bulkheterojunction (BHJ) OPV device involve addition of a small amount of solvent additive to the donor and acceptor solutions. The idea is to retain the acceptor materials into the solution for a longer period of time during the film solidification process, thus allowing the donor material to crystallize earlier. The ultimate morphology resulting from the solvent casting …


Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin Aug 2015

Morphology-Property Relationship For Binary Organic Thin Films, Alyssa Lynn Griffin

Master's Theses

Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements.

Organic thin films can be readily …


Correlating Morphology To Performance In Conjugated Polymer Nanocomposite Thin Films, Siddharth Pradhan Aug 2015

Correlating Morphology To Performance In Conjugated Polymer Nanocomposite Thin Films, Siddharth Pradhan

Masters Theses

The morphology and performance of thin films that consist of conjugated polymers and nanoparticles are investigated in this thesis. In the first system, the morphology of the nanocomposite that consists of low band gap alternating copolymers with a methano-fullerene are determined by neutron scattering and correlated to their photovoltaic performance as polymer solar cells. These results show that the conjugated alternating copolymers have high miscibility relative to other conjugated polymers. The analysis of the scattering data shows that the morphology of the conjugated polymer-fullerene bulk heterojunction can be described as the formation of aggregates on two length scales. Important parameters …


Mechanochemical Investigation Of A Glassy Epoxy-Amine Thermoset Subjected To Fatigue, Stephen Finley Foster May 2015

Mechanochemical Investigation Of A Glassy Epoxy-Amine Thermoset Subjected To Fatigue, Stephen Finley Foster

Dissertations

Covalent bonds in organic molecules can be produced, altered, and broken through various sources of energy and processes. These include photochemical, thermochemical, chemical, and mechanochemical processes. Polymeric materials derive their physical properties from the time scale of motion, summation of intermolecular forces, and number of chain entanglements and crosslinks. Glassy thermoset polymers experience mechanical fatigue during dynamic stress loading and properties diminish with inevitable material failure at stress levels below the ultimate tensile strength (UTS). Damage modeling has been successful in predicting the number of cycles required to induce failure in a specimen due to stress. However, it does not …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu Aug 2014

Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu

Doctoral Dissertations

In bulk heterojunction (BHJ) thin film organic photovoltaics (OPV), morphology control is critical to obtain good device efficiency. Nanoscale phase separation that creates bicontinuous interpenetrating structure on a size scale commensurate with exciton diffusion length (~10 nm) is thought to be the ideal morphology. Results obtained from this work indicate that morphology can be affected by chemical structure of the polymer, processing conditions, blending ratio and post treatments. Physical properties of the material, such as crystallinity, crystal orientation, material interactions and miscibility, surface energy and particle aggregations are critical for determining the morphology and thus the device performance. Previous investigations …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Synthesis Of Perylenediimide-Functionalized Silsesquioxane Nanostructures, Lan Xu May 2014

Synthesis Of Perylenediimide-Functionalized Silsesquioxane Nanostructures, Lan Xu

Masters Theses & Specialist Projects

Organic semiconductors functionalized nanostructures are becoming as promising materials for electronic device applications including organic photovoltaics (OPVs). Perylenediimide (PDI) derivatives have also been known as one of the best n-type organic semiconductors. PDI derivatives can form bulk materials, which are both photochemically and thermally stable and have been widely used in various optoelectronic devices. Due to the formation of high electron mobility of crystalline domains, they prefer to incorporate into a silsesquioxane network. Here, we describe the potential applicability of perylenediimide functionalized silsesquioxane nanoribbons (PDI-dimethyl nanoribbons) as an acceptor for optoelectronic devices. We have developed synthetic procedures to make the …