Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemistry

Molecular And Hybrid Catalysts For Selective Hydrodeoxygenation Of Lignin Model Compounds, Jacob G. Tillou Aug 2024

Molecular And Hybrid Catalysts For Selective Hydrodeoxygenation Of Lignin Model Compounds, Jacob G. Tillou

Theses and Dissertations

Lignin is a highly aromatic, branched polymer and could be utilized as a renewable source of liquid fuel. The advent of “lignin-first” depolymerization processes have allowed for the high-yield isolation of oxygenated aromatic monomers from lignin. These oxygenated aromatic compounds are lower in energy and stability than their deoxygenated counterparts. Selective deoxygenation of these compounds would result in stable, higher value liquid fuels. Using molecular catalysts, selective deoxygenation, or hydrodeoxygenation (HDO), of lignin-derived compounds in the presence of hydrogen is possible.

Immobilization of these molecular catalysts on metal oxide surfaces eliminates the possibility of bimolecular decomposition and allows for easier …


Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Activation Of Hydrogen By Sterically Modulated Coinage Metal Catalysts Via Mutual Quenching Of Hard/Soft Acid/Base Mismatches, Zach Leibowitz Jan 2024

Activation Of Hydrogen By Sterically Modulated Coinage Metal Catalysts Via Mutual Quenching Of Hard/Soft Acid/Base Mismatches, Zach Leibowitz

Honors Projects

To mitigate the devastating environmental impacts of climate change in the coming decades, it is imperative that we replace the use of fossil fuels with renewable energy sources such as wind, solar, and hydroelectric. As these renewable energy sources are inherently intermittent, there exists a need for sustainable mechanisms to store renewable energy for later use. While the direct use of dihydrogen (H2) as a combustible fuel would allow for energy storage without the harmful release of carbon dioxide (CO2) upon combustion, the practicality of H2 as a synthetic fuel is limited by its low …


Photoinduced Alpha-Hydroxy C–H Alkylation Of Mono-Alcohols Via Hydrogen Atom Transfer (Hat) Of An Activated Boron-Containing Complex, Courtney Deanna Glenn Jan 2024

Photoinduced Alpha-Hydroxy C–H Alkylation Of Mono-Alcohols Via Hydrogen Atom Transfer (Hat) Of An Activated Boron-Containing Complex, Courtney Deanna Glenn

Graduate Theses, Dissertations, and Problem Reports

Hydroxy (-OH) groups are one of the most abundant functional groups found in natural products and pharmaceuticals with many of these compounds containing multiple alcohol classes. The ability to selectively functionalize a specific α-OH C–H bond in the presence of other competitive sites would provide straightforward access to new, potentially bioactive compounds. In recent literature, photoredox catalysis has been implemented to perform site and stereoselective α-OH C–H functionalization of cis-diol containing substrates. Incorporating an organoboron cocatalyst into these systems have proven to be crucial in decreasing the bond dissociation energy (BDE) and increasing hydricity of the α-OH C–H bond …


Gas-Phase Mass Spectrometry Studies Of Ternary Metal Carboxylate Complexes, Anthony James Fanizza Jan 2024

Gas-Phase Mass Spectrometry Studies Of Ternary Metal Carboxylate Complexes, Anthony James Fanizza

Graduate Research Theses & Dissertations

In the wake of climate change from rising CO2 emissions and with peak oil looming, the dive into sustainable fuels and energy is becoming increasingly essential. This dissertation investigates ternary ligand-metal cationic complexes for potential catalytic applications in the decarboxylation of carboxylic acids to produce bioavailable and carbon-neutral fuel sources. By utilizing gas-phase reactivity studies via mass spectrometry, namely, collision-induced dissociation and ion-molecule reactions, mechanisms can be elucidated in a regulated chemical environment. When paired with density functional theory calculations for molecular geometries, chemical interactions, charge densities, and energetics, system efficiencies can be further clarified presenting a more complete mechanistic …