Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Chemistry

Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan Dec 2021

Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan

Open Access Theses & Dissertations

The discovery of efficient and sustainable carbon-based nanotechnologies to solve both the scarcity of drinking water and global energy crisis has become a paramount task in the last decades. Owed to the fast population growth and industrialization of the modern society, access to potable water and clean energy technologies is becoming very hard around the globe. Water pollutants have become a serious threat to the environment and ecology because of their toxic nature. Parallelly, the current hydrocarbon-based fuel industries are generating high levels of contamination across the planet, making imperative the development of cleaner energy technologies. In this regard, the …


Facile Nitrogen-Doping Of Screen-Printed Carbon Electrodes For Detection Of Hydrogen Peroxide, Emmanuel Nkyaagye Dec 2021

Facile Nitrogen-Doping Of Screen-Printed Carbon Electrodes For Detection Of Hydrogen Peroxide, Emmanuel Nkyaagye

Electronic Theses and Dissertations

Screen-printed carbon electrodes (SPCEs) have garnered much attention as sensors due to their simplicity and relatively low cost. However, to impart necessary selectivity and sensitivity for specific applications, modification of the SPCE surface, which can involve time-consuming procedures or costly equipment/materials, is typically required. Here, a simple nitrogen-doping process based on NH4OH was used to modify SPCEs prepared from commercially available ink for electrochemical detection of H2O2, a common target for biosensing strategies and indicator of cell stress. XPS studies showed that NH4OH treatment of SPCEs led to a nearly 5-fold increase …


Electrochemical Studies Of Organic And Organometallic Compounds In The Pursuit Of Electrocatalytic Carbon Dioxide Reduction, Joshua J. Ludtke Aug 2021

Electrochemical Studies Of Organic And Organometallic Compounds In The Pursuit Of Electrocatalytic Carbon Dioxide Reduction, Joshua J. Ludtke

College of Science and Health Theses and Dissertations

Carbon dioxide is the main contributor to the greenhouse effect in the world today; developing renewable energy sources and addressing anthropogenic CO2 release into the atmosphere are two key ways of addressing its increasing impact. Electrocatalytic reduction to products like methanol or carbon monoxide is one useful path to address the rapid increase of carbon dioxide, and the fac-M(bpy-R)(CO)3X family of complexes (M = Mn or Re; bpy-R = substituted 2,2’-bipyridine; X = Cl, Br, etc.) is one class of effective CO2 reduction catalysts. Although the capability of the rhenium complex Re(PyBimH)(CO)3Cl (PyBimH …


Synthesis, Characterization, And Catalytic Activity Of Functionalized Metal Bis(Thiosemicarbazones)., Caleb Aaron Calvary Aug 2021

Synthesis, Characterization, And Catalytic Activity Of Functionalized Metal Bis(Thiosemicarbazones)., Caleb Aaron Calvary

Electronic Theses and Dissertations

Bis-(thiosemicarbazones) are a class of ligands that have found a wide range of uses from electrocatalysts to medicinal and diagnostic reagents. These ligands contain a diimine backbone, N2S2 chelating core, and pendent amines. In order to further explore this class of ligands, the previously underreported transamination reaction, which exchanges one pendent amine group for another, was utilized to create several derivatives using aliphatic and aromatic amines. The transamination reaction is appealing alternative to making the desired thiosemicarbazide. Further appeals come from the fact that it is a one-pot reaction that gives highly pure products in good yields. …


Synthesis And Electrochemical Study Of Cuau Nanodendrites For Co2 Reduction, Siltamaki Dylan, Chen Shuai, Rahmati Farnood, Lipkowski Jacek, Chen Ai-Cheng Jun 2021

Synthesis And Electrochemical Study Of Cuau Nanodendrites For Co2 Reduction, Siltamaki Dylan, Chen Shuai, Rahmati Farnood, Lipkowski Jacek, Chen Ai-Cheng

Journal of Electrochemistry

The conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added products is an interesting approach for carbon-containing fuel synthesis using renewable and clean energy. The electrochemical reduction of CO2 is one of the promising strategies for the storage of intermittent renewable energy resources. The development of electrocatalysts with high activity and stability is vital in the electrochemical CO2 reduction process. In this study, copper and gold alloyed (CuAu) electrodes with nanodendritic structures were synthesized using a facile electrodeposition method. The CuAu nanodendrites with the atomic ratio of Cu to Au being approximately 1:1 …


Preparation Of Co1-XS-Mns@Cnts/Cnfs For Electrocatalytic Oxygen Reduction Reaction, Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang Jun 2021

Preparation Of Co1-XS-Mns@Cnts/Cnfs For Electrocatalytic Oxygen Reduction Reaction, Fang-Yan Liu, Qian Zhang, Yue-Kun Li, Feng Huang, Meng-Ye Wang

Journal of Electrochemistry

As an important cathode reaction in fuel cells and metal-air batteries, oxygen reduction reaction (ORR) is a complex reaction of slow kinetics, which severely limits performances of fuel cells and metal-air batteries. Therefore, it is of key importance to find an efficient and stable electrocatalyst to promote ORR. Carbon-based materials, which possess high conductivity, good stability and large specific surface area, are usually used in electrocatalytic ORR. However, pure carbon-based materials exhibit low efficiency. Coupling carbon-based materials with manganese (Mn) and cobalt (Co) transition metals containing 3d orbitals is an effective way to improve electrocatalytic performance. Herein, carbon nanofibers containing …


Application Of Atomically Precise Metal Nanoclusters In Electrocatalysis, Zhi-Hua Zhuang, Wei Chen Apr 2021

Application Of Atomically Precise Metal Nanoclusters In Electrocatalysis, Zhi-Hua Zhuang, Wei Chen

Journal of Electrochemistry

Metal nanoclusters (M NCs) consist of only several to a few hundred of metal atoms and possess core sizes less than 2 nm. Owing to the quantum size effect, the electronic states of M NCs evolve to discrete levels similar to the molecule energy gaps, other than a continuous density of states to produce plasmon characteristic of bulk metal nanoparticles (M NPs). In comparison with the conventional M NPs, M NCs exhibit dramatically unique electronic and optical properties, such as molecule-like energy gaps, strong photoluminescence and high catalytic properties, which make them promising for potential application in numerous fields, such …


Preparation Of Pdcoir Tetrahedron Nanocatalysts And Its Performance Toward Ethanol Oxidation Reaction, Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun Feb 2021

Preparation Of Pdcoir Tetrahedron Nanocatalysts And Its Performance Toward Ethanol Oxidation Reaction, Zhi-Yuan Yu, Rui Huang, Jie Liu, Guang Li, Qian-Tong Song, Shi-Gang Sun

Journal of Electrochemistry

As a new energy conversion device, direct ethanol fuel cells (DEFCs) are widely concerned because of their remarkable advantages such as high theoretical energy density and wide fuel sources. However, the rapid development of DEFCs has been severely impeded due to the sluggish kinetic process and toxic intermediates especially in their anodic reactions. Palladium (Pd)-based materials are considered to be excellent anode catalysts for DEFCs, especially under alkaline conditions. And further improving their performance is an important direction to promote the development of DEFCs. Surface structure and composition are the key factors affecting the performance of catalysts which can be …


A Molecular Tetrahedral Cobalt-Seleno-Based Complex As An Efficient Electrocatalyst For Water Splitting, Ibrahim Munkaila Abdullahi, Jahangir Masud, Polydoros Chrisovalantis Ioannou, Eleftherios Ferentinos, Panayotis Kyritsis, Manashi Nath Feb 2021

A Molecular Tetrahedral Cobalt-Seleno-Based Complex As An Efficient Electrocatalyst For Water Splitting, Ibrahim Munkaila Abdullahi, Jahangir Masud, Polydoros Chrisovalantis Ioannou, Eleftherios Ferentinos, Panayotis Kyritsis, Manashi Nath

Chemistry Faculty Research & Creative Works

The cobalt-seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm-2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt-seleno-based complex exhibits a high mass activity (14.15 A g-1) and …


Advancements Toward Sustainable Solar Fuel Production Utilizing Reductive Homogeneous Electro- And Photocatalysis, Hunter Pratt Shirley Jan 2021

Advancements Toward Sustainable Solar Fuel Production Utilizing Reductive Homogeneous Electro- And Photocatalysis, Hunter Pratt Shirley

Electronic Theses and Dissertations

Molecular CO2 and H+ reductive catalysts, whether they be electro- or photocatalytic, have been shown to be possible routes of harnessing solar energy in a clean, renewable manner. There are few electrocatalysts operating at reasonable overpotentials to prove useful in artificial photosynthetic systems, and there are a number of environmental factors within these systems that have yet to be evaluated. Photo-driven catalysis is rare, difficult to control, and rarely provides high-value CO2 reduction products. I report herein an exceptionally low overpotential H+ reduction catalyst, a method of modulating electrocatalysts in-situ to improve performance, a first-of-its-kind mononuclear proton reduction photocatalyst, a …