Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Chemistry Faculty Publications

2017

Hydrogen peroxide

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Regioselective Baeyer–Villiger Oxidation Of Lignin Model Compounds With Tin Beta Zeolite Catalyst And Hydrogen Peroxide, John Adam Jennings, Sean R. Parkin, Eric Munson, Sean Delaney, Julie L. Calahan, Mark Isaacs, Kunlun Hong, Mark Crocker May 2017

Regioselective Baeyer–Villiger Oxidation Of Lignin Model Compounds With Tin Beta Zeolite Catalyst And Hydrogen Peroxide, John Adam Jennings, Sean R. Parkin, Eric Munson, Sean Delaney, Julie L. Calahan, Mark Isaacs, Kunlun Hong, Mark Crocker

Chemistry Faculty Publications

Lignin depolymerization represents a promising approach to the sustainable production of aromatic molecules. One potential approach to the stepwise depolymerization of lignin involves oxidation of the benzylic alcohol group in β-O-4 and β-1 linkages, followed by Baeyer–Villiger oxidation (BVO) of the resulting ketones and subsequent ester hydrolysis. Towards this goal, BVO reactions were performed on 2-adamantanone, a series of acetophenone derivatives, and lignin model compounds using a tin beta zeolite/hydrogen peroxide biphasic system. XRD, 119Sn MAS NMR spectroscopy, DRUVS and XPS were used to determine tin speciation in the catalyst, the presence of both framework Sn and extra framework …


Controlled Microfabrication Of High-Aspect-Ratio Structures In Silicon At The Highest Etching Rates: The Role Of H2o2 In The Anodic Dissolution Of Silicon In Acidic Electrolytes, Chiara Cozzi, Giovanni Polito, Kurt W. Kolasinski, Giuseppe Barillaro Feb 2017

Controlled Microfabrication Of High-Aspect-Ratio Structures In Silicon At The Highest Etching Rates: The Role Of H2o2 In The Anodic Dissolution Of Silicon In Acidic Electrolytes, Chiara Cozzi, Giovanni Polito, Kurt W. Kolasinski, Giuseppe Barillaro

Chemistry Faculty Publications

In this work the authors report on the controlled electrochemical etching of high-aspect-ratio (from 5 to 100) structures in silicon at the highest etching rates (from 3 to 10 µm min−1) at room temperature. This allows silicon microfabrication entering a previously unattainable region where etching of high-aspect-ratio structures (beyond 10) at high etching rate (over 3 µm min−1) was prohibited for both commercial and research technologies. Addition of an oxidant, namely H2O2, to a standard aqueous hydrofluoric (HF) acid electrolyte is used to dramatically change the stoichiometry of the silicon dissolution process under anodic biasing without loss of etching control …