Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Chemistry Faculty Publications

Discipline
Institution
Keyword
Publication Year

Articles 1 - 30 of 1109

Full-Text Articles in Chemistry

Virgin Coconut Oil (Vco) Supplementation Relieves Symptoms And Inflammation Among Covid-19 Positive Adults: A Single-Blind Randomized Trial, Imelda Angeles-Agdeppa, Jacus S. Nacis, Fabian M. Dayrit, Keith V. Tanda Jan 2024

Virgin Coconut Oil (Vco) Supplementation Relieves Symptoms And Inflammation Among Covid-19 Positive Adults: A Single-Blind Randomized Trial, Imelda Angeles-Agdeppa, Jacus S. Nacis, Fabian M. Dayrit, Keith V. Tanda

Chemistry Faculty Publications

A clinical study conducted in 2020 showed that virgin coconut oil (VCO) has been found effective in the rapid relief of COVID-19 symptoms and normalization of the C-reactive protein (CRP) concentration among probable and suspected cases of COVID-19. This present study aimed to validate those results and to evaluate the effects of VCO among COVID-19 patients through a 28-day randomized, single-blind trial conducted among 76 SARS-CoV-2 RT-PCR (reverse transcription-polymerase chain report)-confirmed adults, with VCO given as a COVID-19 adjunct therapy. The results showed that VCO recipients were free from symptoms and had normal CRP concentrations by day 14. In comparison, …


Seeing Eye To Eye? Comparing Faculty And Student Perceptions Of Biomolecular Visualization Assessments, Josh T. Beckham, Daniel R. Dries, Bonnie L. Hall, Rarchel M. Mitton-Fry, Shelly Engelman, Charmita Burch, Roderico Acevedo, Pamela S. Mertz, Didem Vardar-Ulu, Swati Agrawal, Kristin M. Fox, Shane Austin, Margaret A. Franzen, Henry V. Jakubowski, Walter R. P. Novak, Rebecca Roberts, Alberto I. Roca, Kristen Procko Jan 2024

Seeing Eye To Eye? Comparing Faculty And Student Perceptions Of Biomolecular Visualization Assessments, Josh T. Beckham, Daniel R. Dries, Bonnie L. Hall, Rarchel M. Mitton-Fry, Shelly Engelman, Charmita Burch, Roderico Acevedo, Pamela S. Mertz, Didem Vardar-Ulu, Swati Agrawal, Kristin M. Fox, Shane Austin, Margaret A. Franzen, Henry V. Jakubowski, Walter R. P. Novak, Rebecca Roberts, Alberto I. Roca, Kristen Procko

Chemistry Faculty Publications

While visual literacy has been identified as a foundational skill in life science education, there are many challenges in teaching and assessing biomolecular visualization skills. Among these are the lack of consensus about what constitutes competence and limited understanding of student and instructor perceptions of visual literacy tasks. In this study, we administered a set of biomolecular visualization assessments, developed as part of the BioMolViz project, to both students and instructors at multiple institutions and compared their perceptions of task difficulty. We then analyzed our findings using a mixed-methods approach. Quantitative analysis was used to answer the following research questions: …


Peripheral Blood Mononuclear Cell Mitochondrial Dysfunction In Acute Alcohol-Associated Hepatitis, Annette Bellar, Nicole Welch, Jaividhya Dasarathy, Amy Attaway, Ryan Musich, Avinash Kumar, Jinendiran Sekar, Saurabh Mishra, Yana I. Sandlers, Et. Al May 2023

Peripheral Blood Mononuclear Cell Mitochondrial Dysfunction In Acute Alcohol-Associated Hepatitis, Annette Bellar, Nicole Welch, Jaividhya Dasarathy, Amy Attaway, Ryan Musich, Avinash Kumar, Jinendiran Sekar, Saurabh Mishra, Yana I. Sandlers, Et. Al

Chemistry Faculty Publications

Background: Patients with acute alcohol-associated hepatitis (AH) have immune dysfunction. Mitochondrial function is critical for immune cell responses and regulates senescence. Clinical translational studies using complementary bioinformatics-experimental validation of mitochondrial responses were performed in peripheral blood mononuclear cells (PBMC) from patients with AH, healthy controls (HC), and heavy drinkers without evidence of liver disease (HD).
Methods: Feature extraction for differentially expressed genes (DEG) in mitochondrial components and telomere regulatory pathways from single-cell RNAseq (scRNAseq) and integrated 'pseudobulk' transcriptomics from PBMC from AH and HC (n = 4 each) were performed. After optimising isolation and processing protocols for functional studies in …


Investigation Of Cofactor Activities Of Endothelial Microparticle- Thrombomodulin With Liposomal Surrogate, Valentinas Gruzdys, Lin Wang, Dan Wang, Rachel Huang, Xue-Long Sun Apr 2023

Investigation Of Cofactor Activities Of Endothelial Microparticle- Thrombomodulin With Liposomal Surrogate, Valentinas Gruzdys, Lin Wang, Dan Wang, Rachel Huang, Xue-Long Sun

Chemistry Faculty Publications

Thrombomodulin (TM) is a type I transmembrane glycoprotein mainly expressed on the endothelial cells, where it binds thrombin to form the thrombin-TM complex that can activate protein C and thrombin-activable fibrinolysis inhibitor (TAFI) and induce anticoagulant and anti-fibrinolytic reactions, respec-tively. Cell activation and injury often sheds microparticles that contain membrane TM, which circulate in biofluids like blood. However, the biological function of circulating microparticle-TM is still unknown even though it has been recognized as a biomarker of endothelial cell injury and damage. In comparison with cell membrane, different phospholipids are exposed on the microparticle surface due to cell membrane "flip-flop"upon …


Development And Validation Of A Liquid Chromatography-Tandem Mass Spectrometry Method For The Determination Of Temozolomide In Mouse Brain Tissue, Raghavi Kakarla, Kimberly Yacoub, Rebecca L. Bearden, Aimin Zhou, Sanjib Mukherjee, Frank Y. Shan, Baochuan Guo Apr 2023

Development And Validation Of A Liquid Chromatography-Tandem Mass Spectrometry Method For The Determination Of Temozolomide In Mouse Brain Tissue, Raghavi Kakarla, Kimberly Yacoub, Rebecca L. Bearden, Aimin Zhou, Sanjib Mukherjee, Frank Y. Shan, Baochuan Guo

Chemistry Faculty Publications

Temozolomide is a Food and Drug Administration-approved anticancer drug that has poor drug delivery via oral or intravenous routes. A potential strategy to combat this problem is investigating alternative routes of administration, requiring quantitation of the drug in the brain tissues by liquid chromatography-mass spectrometry. However, current methods used to extract the drug from brain tissues resulted in poor recovery and substantial matrix effects. Herein, we reported a new two-step extraction method that involves the use of Proteinase K to lyse tumor tissues to efficiently release the drug, followed by ethanol protein precipitation. The extracts were then separated on a …


Inducible Nitric Oxide Synthase Embedded In Alginate/Polyethyleneimine Hydrogel As A New Platform To Explore No-Driven Modulation Of Biological Function, Shaimaa Maher, Lauren A. Smith, Celine A. El-Khoury, Haitham F. Kalil, Khalid Sossey-Alaoui, Mekki Bayachou Feb 2023

Inducible Nitric Oxide Synthase Embedded In Alginate/Polyethyleneimine Hydrogel As A New Platform To Explore No-Driven Modulation Of Biological Function, Shaimaa Maher, Lauren A. Smith, Celine A. El-Khoury, Haitham F. Kalil, Khalid Sossey-Alaoui, Mekki Bayachou

Chemistry Faculty Publications

Nitric oxide (NO), a small free radical molecule, turned out to be pervasive in biology and was shown to have a substantial influence on a range of biological activities, including cell growth and apoptosis. This molecule is involved in signaling and affects a number of physiologic functions. In recent decades, several processes related to cancer, such as angiogenesis, programmed cell death, infiltration, cell cycle progression, and metastasis, have been linked with nitric oxide. In addition, other parallel work showed that NO also has the potential to operate as an anti-cancer agent. As a result, it has gained attention in cancer-related …


Modulating Photochemical Properties To Enhance The Stability Of Electronically Dimmable Eye Protection Devices, Sruthy Baburaj, Jayachandran Parthiban, Sarvar Aminovich Rakhimov, Rasheedah Johnson, Ludmila Sukhomlinova, Paul Luchette, Steffen Jockusch, Malcolm D. E. Forbes, Jayaraman Sivaguru Jan 2023

Modulating Photochemical Properties To Enhance The Stability Of Electronically Dimmable Eye Protection Devices, Sruthy Baburaj, Jayachandran Parthiban, Sarvar Aminovich Rakhimov, Rasheedah Johnson, Ludmila Sukhomlinova, Paul Luchette, Steffen Jockusch, Malcolm D. E. Forbes, Jayaraman Sivaguru

Chemistry Faculty Publications

The study evaluates compatibility of stabilizers with dye doped liquid crystal (LC) scaffolds that are used in electronically dimmable materials. The photodegradation of the materials was investigated and suitable stabilizers were evaluated to slow the degradation process. Various types of benzotriazole-based stabilizers were evaluated for stabilizing the liquid crystals. Based on spin trapping experiments, radicals generated upon UV exposure is likely responsible for the degradation of the system. The radical generation is competitively inhibited by the addition of stabilizers.

Abbreviations: LC, liquid crystal; STB, stabilizers.


Silica Particles Convert Thiol-Containing Molecules To Disulfides, Yangjie Li, Kurt W. Kolasinski, Richard N. Zare Jan 2023

Silica Particles Convert Thiol-Containing Molecules To Disulfides, Yangjie Li, Kurt W. Kolasinski, Richard N. Zare

Chemistry Faculty Publications

Synthetic amorphous silica is a common food additive and a popular cosmetic ingredient. Mesoporous silica particles are also widely studied for their potential use in drug delivery and imaging applications because of their unique properties, such as tunable pore sizes, large surfaces areas, and assumed biocompatibility. Such a nanomaterial, when consisting of pure silicon dioxide, is generally considered to be chemically inert, but in this study, we showed that oxidation yields for different compounds were facilitated by simply incubating aqueous solutions with pure silica particles. Three thiol-containing molecules, L-cysteine, glutathione, and D-penicillamine, were studied separately, and it was found that …


Rapid Detection Of Recurrent Non-Muscle Invasive Bladder Cancer In Urine Using Atr-Ftir Technology, Abdullah I. El-Falouji, Dalia M. Sabri, Naira M. Lofti, Doaa M. Medany, Samar A. Mohamed, Mai Alaa-Eldin, Amr Mounir Selim, Asmaa A. El Leithy, Haitham F. Kalil, Ahmed El-Tobgy, Ahmed Mohamed Dec 2022

Rapid Detection Of Recurrent Non-Muscle Invasive Bladder Cancer In Urine Using Atr-Ftir Technology, Abdullah I. El-Falouji, Dalia M. Sabri, Naira M. Lofti, Doaa M. Medany, Samar A. Mohamed, Mai Alaa-Eldin, Amr Mounir Selim, Asmaa A. El Leithy, Haitham F. Kalil, Ahmed El-Tobgy, Ahmed Mohamed

Chemistry Faculty Publications

Non-muscle Invasive Bladder Cancer (NMIBC) accounts for 80% of all bladder cancers. Although it is mostly low-grade tumors, its high recurrence rate necessitates three-times-monthly follow-ups and cystoscopy examinations to detect and prevent its progression. A rapid liquid biopsy-based assay is needed to improve detection and reduce complications from invasive cystoscopy. Here, we present a rapid spectroscopic method to detect the recurrence of NMIBC in urine. Urine samples from previously-diagnosed NMIBC patients (n = 62) were collected during their follow-up visits before cystoscopy examination. Cystoscopy results were recorded (41 cancer-free and 21 recurrence) and attenuated total refraction Fourier transform infrared (ATR-FTIR) …


Nucleobase-Modified Nucleosides And Nucleotides: Applications In Biochemistry, Synthetic Biology, And Drug Discovery, Anthony J. Berdis Nov 2022

Nucleobase-Modified Nucleosides And Nucleotides: Applications In Biochemistry, Synthetic Biology, And Drug Discovery, Anthony J. Berdis

Chemistry Faculty Publications

DNA is often referred to as the "molecule of life " since it contains the genetic blueprint for all forms of life on this planet. The core building blocks composing DNA are deoxynucleotides. While the deoxyribose sugar and phosphate group are ubiquitous, it is the composition and spatial arrangement of the four natural nucleobases, adenine (A), cytosine (C), guanine (G), and thymine (T), that provide diversity in the coding information present in DNA. The ability of DNA to function as the genetic blueprint has historically been attributed to the formation of proper hydrogen bonding interactions made between complementary nucleobases. However, …


A Novel Ibuprofen Derivative And Its Complexes: Physicochemical Characterization, Dft Modeling, Docking, In Vitro Anti-Inflammatory Studies, And Dna Interaction, Abbas M. Abbas, Ahmed Aboelmagd, Safaa M. Kishk, Hossam H. Nasrallah, W. Christropher Boyd, Haitham F. Kalil, Adel S. Orabi Nov 2022

A Novel Ibuprofen Derivative And Its Complexes: Physicochemical Characterization, Dft Modeling, Docking, In Vitro Anti-Inflammatory Studies, And Dna Interaction, Abbas M. Abbas, Ahmed Aboelmagd, Safaa M. Kishk, Hossam H. Nasrallah, W. Christropher Boyd, Haitham F. Kalil, Adel S. Orabi

Chemistry Faculty Publications

A novel derivative of ibuprofen and salicylaldehyde N '-(4-hydroxybenzylidene)-2-(4-isobutylphenyl) propane hydrazide (HL) was synthesized, followed by its complexation with Cu, Ni, Co, Gd, and Sm. The compounds obtained were characterized by (HNMR)-H-1, mass spectrometry, UV-Vis spectroscopy, FT-IR spectroscopy, thermal analysis (DTA and TGA), conductivity measurements, and magnetic susceptibility measurements. The results indicate that the complexes formed were [Cu(L)(H2O)]Cl center dot 2H(2)O, [Ni(L)(2)], [Co(L)(2)]center dot H2O, [Gd(L)(2)(H2O)(2)](NO3)center dot 2H(2)O and [Sm(L)(2)(H2O)(2)](NO3)center dot 2H(2)O. The surface characteristics of the produced compounds were evaluated by DFT calculations using the MOE environment. The docking was performed against the COX2 targeting protein (PDB code: 5IKT …


Sialidase Inhibitors With Different Mechanisms, Joseph M. Keil, Garrett R. Rafn, Isaac M. Turan, Majdi A. Aljohani, Reza Sahebjam-Atabaki, Xue-Long Sun Oct 2022

Sialidase Inhibitors With Different Mechanisms, Joseph M. Keil, Garrett R. Rafn, Isaac M. Turan, Majdi A. Aljohani, Reza Sahebjam-Atabaki, Xue-Long Sun

Chemistry Faculty Publications

Sialidases, or neuraminidases, are enzymes that catalyze the hydrolysis of sialic acid (Sia)-containing molecules, mostly removal of the terminal Sia (desialylation). By desialylation, sialidase can modulate the functionality of the target compound and is thus often involved in biological pathways. Inhibition of sialidases with inhibitors is an important approach for under-standing sialidase function and the underlying mechanisms and could serve as a therapeutic approach as well. Transition-state analogues, such as anti-influenza drugs oseltamivir and zanamivir, are major sialidase inhibitors. In addition, difluoro-sialic acids were developed as mechanism-based sialidase inhibitors. Further, fluorinated quinone methide-based suicide substrates were reported. Sialidase product analogue …


Direct Ink 3d Printing Of Porous Carbon Monoliths For Gas Separations, Marisa L. Comroe, Kurt W. Kolasinski, Dipendu Saha Sep 2022

Direct Ink 3d Printing Of Porous Carbon Monoliths For Gas Separations, Marisa L. Comroe, Kurt W. Kolasinski, Dipendu Saha

Chemistry Faculty Publications

Additive manufacturing or 3D printing is the advanced method of manufacturing monolithic adsorbent materials. Unlike beads or pellets, 3D monolithic adsorbents possess the advantages of widespread structural varieties, low heat and mass transfer resistance, and low channeling of fluids. Despite a large volume of research on 3D printing of adsorbents having been reported, such studies on porous carbons are highly limited. In this work, we have reported direct ink 3D printing of porous carbon; the ink consisted of commercial activated carbon, a gel of poly(4-vinylphenol) and Pluronic F127 as plasticizer, and bentonite as the binder. The 3D printing was performed …


Multimodal Cotranslational Interactions Direct Assembly Of The Human Multi-Trna Synthetase Complex, Krishnendu Khan, Briana Long, Valentin Gogonea, Gauravi M. Deshpande, Kommireddy Vasu, Paul L. Fox Sep 2022

Multimodal Cotranslational Interactions Direct Assembly Of The Human Multi-Trna Synthetase Complex, Krishnendu Khan, Briana Long, Valentin Gogonea, Gauravi M. Deshpande, Kommireddy Vasu, Paul L. Fox

Chemistry Faculty Publications

Amino acid ligation to cognate transfer RNAs (tRNAs) is catalyzed by aminoacyl-tRNA synthetases (aaRSs)-essential interpreters of the genetic code during translation. Mammalian cells harbor 20 cytoplasmic aaRSs, out of which 9 (in 8 proteins), with 3 non-aaRS proteins, AIMPs 1 to 3, form the similar to 1.25-MDa multi-tRNA synthetase complex (MSC). The function of MSC remains uncertain, as does its mechanism of assembly. Constituents of multiprotein complexes encounter obstacles during assembly, including inappropriate interactions, topological constraints, premature degradation of unassembled subunits, and suboptimal stoichiometry. To facilitate orderly and efficient complex formation, some complexes are assembled cotranslationally by a mechanism in …


Towards Upcycling Biomass-Derived Crosslinked Polymers With Light, Ravichandranath Singathi, Ramya Raghunathan, Retheesh Krishnan, Saravana Kumar Rajendran, Sruthy Baburaj, Mukund P. Sibi, Dean C. Webster, Jayaraman Sivaguru May 2022

Towards Upcycling Biomass-Derived Crosslinked Polymers With Light, Ravichandranath Singathi, Ramya Raghunathan, Retheesh Krishnan, Saravana Kumar Rajendran, Sruthy Baburaj, Mukund P. Sibi, Dean C. Webster, Jayaraman Sivaguru

Chemistry Faculty Publications

Photodegradable, recyclable, and renewable, crosslinked polymers from bioresources show promise towards developing a sustainable strategy to address the issue of plastics degradability and recyclability. Photo processes are not widely exploited for upcycling polymers in spite of the potential to have spatial and temporal control of the degradation in addition to being a green process. In this report we highlight a methodology in which biomass-derived crosslinked polymers can be programmed to degrade at ≈300 nm with ≈60 % recovery of the monomer. The recovered monomer was recycled back to the crosslinked polymer.


Synthesis Of A Novel Ras Farnesyl Protein Transferase Inhibitor, Mark F. Mechelke, Anna Mikolchak May 2022

Synthesis Of A Novel Ras Farnesyl Protein Transferase Inhibitor, Mark F. Mechelke, Anna Mikolchak

Chemistry Faculty Publications

Mutant RAS proteins are associated with 30% of all human cancers. Unregulated cell growth caused by mutant RAS proteins can be prevented by RAS farnesyl protein transferase (FPTase) inhibitors. A novel FPTase inhibitor has been synthesized incorporating a modified farnesyl “tail” and a customized diphosphate “head”. It is anticipated that the modified “tail”, incorporating a phenyl substituent, will bind more tightly to FPTase due to nonbonding interactions between the aromatic ring and ten aromatic amino acid residues that line the enzyme active site. The altered polar “head”, designed from L-aspartic acid, has already been shown to mimic the natural substrate’s …


Characterization Of Mechanochemical Modification Of Porous Silicon With Arginine, Jacklyn A. Dipietro, Kurt W. Kolasinski Mar 2022

Characterization Of Mechanochemical Modification Of Porous Silicon With Arginine, Jacklyn A. Dipietro, Kurt W. Kolasinski

Chemistry Faculty Publications

Mechanochemistry initiated the reaction of hydrogen-terminated porous silicon (H/por-Si) powder with arginine. Samples were analyzed using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. Arginine, which was physisorbed onto the surface of por-Si, blue-shifted the peak PL intensity from similar to 630 nm for the H/por-Si to similar to 565 nm for arginine-coated por-Si. Grinding for 4 h reduced >80% of the initially 2-45 mu m particles to <500 nm, but was observed to quench the PL. With appropriate rinsing and centrifugation, particles in the 100 nm range were isolated. Rinsing ground powder with water was required to remove the unreacted arginine. Without rinsing, excess arginine induced the aggregation of passivated particles. However, water reacted with the freshly ground por-Si powder producing H-2. A zeta potential of +42 mV was measured for arginine-terminated por-Si particles dispersed in deionized water. This positive value was consistent with termination such that NH2 groups extended away from the surface. Furthermore, this result was confirmed by FTIR spectra, which suggested that arginine was bound to silicon through the formation of a covalent Si-O bond.


Characteristics And Assessing Biological Risks Of Airborne Bacteria In Waste Sorting Plant, Abbas Norouzian Baghani, Somayeh Golbaz, Gholamreza Ebrahimzadeh, Marcelo I. Guzman, Mahdieh Delikhoon, Mehdi Jamshidi Rastani, Abdullah Barkhordari, Ramin Nabizadeh Feb 2022

Characteristics And Assessing Biological Risks Of Airborne Bacteria In Waste Sorting Plant, Abbas Norouzian Baghani, Somayeh Golbaz, Gholamreza Ebrahimzadeh, Marcelo I. Guzman, Mahdieh Delikhoon, Mehdi Jamshidi Rastani, Abdullah Barkhordari, Ramin Nabizadeh

Chemistry Faculty Publications

Examining the concentration and types of airborne bacteria in waste paper and cardboard sorting plants (WPCSP) is an urgent matter to inform policy makers about the health impacts on exposed workers. Herein, we collected 20 samples at 9 points of a WPCSP every 6 winter days, and found that the most abundant airborne bacteria were positively and negatively correlated to relative humidity and temperature, respectively. The most abundant airborne bacteria (in units of CFU m−3) were: Staphylococcus sp. (72.4) > Micrococcus sp. (52.2) > Bacillus sp. (30.3) > Enterococcus sp. (24.0) > Serratia marcescens (20.1) > E. coli (19.1) > Pseudomonas sp. (16.0) > Nocardia …


Network-Based Pharmacology Study Reveals Protein Targets For Medical Benefits And Harms Of Cannabinoids In Humans, Xingyu Li, Amit Madhukar Kudke, Felix Joseph Nepveux V, Yan Xu Feb 2022

Network-Based Pharmacology Study Reveals Protein Targets For Medical Benefits And Harms Of Cannabinoids In Humans, Xingyu Li, Amit Madhukar Kudke, Felix Joseph Nepveux V, Yan Xu

Chemistry Faculty Publications

This network-based pharmacology study intends to uncover the underlying mechanisms of cannabis leading to a therapeutic benefit and the pathogenesis for a wide range of diseases claimed to benefit from or be caused by the use of the cannabis plant. Cannabis contains more than 600 chemical components. Among these components, cannabinoids are well-known to have multifarious pharmacological activities. In this work, twelve cannabinoids were selected as active compounds through text mining and drug-like properties screening and used for initial protein-target prediction. The disease-associated biological functions and pathways were enriched through GO and KEGG databases. Various biological networks [i.e., protein-protein interaction, …


All-Atom Simulations Uncover Structural And Dynamical Properties Of Sting Proteins In The Membrane System, Rachel Payne, Silvia Crivelli, Masakatsu Watanabe Ph.D. Feb 2022

All-Atom Simulations Uncover Structural And Dynamical Properties Of Sting Proteins In The Membrane System, Rachel Payne, Silvia Crivelli, Masakatsu Watanabe Ph.D.

Chemistry Faculty Publications

Recent studies have shown that the stimulator of interferon gene (STING) protein plays a central role in the immune system by facilitating the production of Type I interferons in cells. The STING signaling pathway is also a prominent activator of cancer-killing T cells that initiates a powerful adaptive immune response. Since biomolecular signaling pathways are complicated and not easily identified through traditional experiments, molecular dynamics (MD) has often been used to study these biological pathways’ structural and dynamical responses. Here, we carried out MD simulations for full-length chicken and human STING (chSTING and hSTING) proteins. Specifically, we investigated ligand-bound closed …


Metabolic Features Of Brain Function With Relevance To Clinical Features Of Alzheimer And Parkinson Diseases, David Allan Butterfield, Maria Favia, Iolanda Spera, Annalisa Campanella, Martina Lanza, Alessandra Castegna Jan 2022

Metabolic Features Of Brain Function With Relevance To Clinical Features Of Alzheimer And Parkinson Diseases, David Allan Butterfield, Maria Favia, Iolanda Spera, Annalisa Campanella, Martina Lanza, Alessandra Castegna

Chemistry Faculty Publications

Brain metabolism is comprised in Alzheimer’s disease (AD) and Parkinson’s disease (PD). Since the brain primarily relies on metabolism of glucose, ketone bodies, and amino acids, aspects of these metabolic processes in these disorders—and particularly how these altered metabolic processes are related to oxidative and/or nitrosative stress and the resulting damaged targets—are reviewed in this paper. Greater understanding of the decreased functions in brain metabolism in AD and PD is posited to lead to potentially important therapeutic strategies to address both of these disorders, which cause relatively long-lasting decreased quality of life in patients.


Synthesis Of Β,Β-Disubstituted Styrenes Via Trimethylsilyl Trifluoromethanesulfonate-Promoted Aldehyde-Aldehyde Aldol Addition-Deformylative Elimination., Grant J. Dixon, Michael R. Rodriguez, Tyler G. Chong, Kevin Y. Kim, C. Wade Downey Jan 2022

Synthesis Of Β,Β-Disubstituted Styrenes Via Trimethylsilyl Trifluoromethanesulfonate-Promoted Aldehyde-Aldehyde Aldol Addition-Deformylative Elimination., Grant J. Dixon, Michael R. Rodriguez, Tyler G. Chong, Kevin Y. Kim, C. Wade Downey

Chemistry Faculty Publications

In the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) and 2,6-lutidine, α,α-disubstituted aldehydes condense with electron-rich aromatic aldehydes to yield β, β- disubstituted styrenes. More electron-rich aromatic aldehydes react more rapidly and in higher yield. Preliminary results suggest that the reaction may proceed via the ionization and formal deformylation of an aldol intermediate.


Visualizing Phytochemical-Protein Interaction Networks: Momordica Charantia And Cancer, Yumi L. Briones, Alexander T. Young, Fabian M. Dayrit, Armando Jerome De Jesus, Nina Rosario L. Rojas Dec 2021

Visualizing Phytochemical-Protein Interaction Networks: Momordica Charantia And Cancer, Yumi L. Briones, Alexander T. Young, Fabian M. Dayrit, Armando Jerome De Jesus, Nina Rosario L. Rojas

Chemistry Faculty Publications

The in silico study of medicinal plants is a rapidly growing field. Techniques such as reverse screening and network pharmacology are used to study the complex cellular action of medicinal plants against disease. However, it is difficult to produce a meaningful visualization of phytochemical-protein interactions (PCPIs) in the cell. This study introduces a novel workflow combining various tools to visualize a PCPI network for a medicinal plant against a disease. The five steps are 1) phytochemical compilation, 2) reverse screening, 3) network building, 4) network visualization, and 5) evaluation. The output is a PCPI network that encodes multiple dimensions of …


Comparative Toxicity, Phytochemistry, And Use Of 53 Philippine Medicinal Plants, Lydia M. Clemen-Pascual, Rene Angelo S. Macahig, Nina Rosario L. Rojas Dec 2021

Comparative Toxicity, Phytochemistry, And Use Of 53 Philippine Medicinal Plants, Lydia M. Clemen-Pascual, Rene Angelo S. Macahig, Nina Rosario L. Rojas

Chemistry Faculty Publications

The study compares the toxicity of 53 selected medicinal plants commonly used in the Philippines to treat various diseases. It uses as a benchmark Vitex negundo L., which was approved by the Philippine Food and Drug Administration as an herbal drug for cough and asthma after passing clinical trials for safety and efficacy. The methods were chosen for their simplicity and accessibility even for resource-limited laboratories. Extracts (95 % ethanol) of the medicinal parts of the plants were (1) chemically profiled using qualitative phytochemical tests that detect the presence of key classes of bioactive compounds; and (2) evaluated for toxicity …


A Tribute To Professor Gaetano Granozzi And His Contributions To Surface Science On The Occasion Of His 70th Birthday, Kurt W. Kolasinski Dec 2021

A Tribute To Professor Gaetano Granozzi And His Contributions To Surface Science On The Occasion Of His 70th Birthday, Kurt W. Kolasinski

Chemistry Faculty Publications

On the occasion of his 70th birthday, we celebrate the career of our Editor-in-Chief, Professor Gaetano Granozzi. Prof. Granozzi’s work is marked by his dedication to the fundamental understanding of technologically relevant systems through the lens of surface science.


Aberrant Crosstalk Between Insulin Signaling And Mtor In Young Down Syndrome Individuals Revealed By Neuronal-Derived Extracellular Vesicles, Marzia Perluigi, Anna Picca, Elita Montanari, Riccardo Calvani, Federico Marini, Roberto Matassa, Antonella Tramutola, Alberto Villani, Giuseppe Familiari, Fabio Di Domenico, D. Allan Butterfield, Kenneth J. Oh, Emanuele Marzetti, Diletta Valentini, Eugenio Barone Nov 2021

Aberrant Crosstalk Between Insulin Signaling And Mtor In Young Down Syndrome Individuals Revealed By Neuronal-Derived Extracellular Vesicles, Marzia Perluigi, Anna Picca, Elita Montanari, Riccardo Calvani, Federico Marini, Roberto Matassa, Antonella Tramutola, Alberto Villani, Giuseppe Familiari, Fabio Di Domenico, D. Allan Butterfield, Kenneth J. Oh, Emanuele Marzetti, Diletta Valentini, Eugenio Barone

Chemistry Faculty Publications

INTRODUCTION: Intellectual disability, accelerated aging, and early-onset Alzheimer-like neurodegeneration are key brain pathological features of Down syndrome (DS). Although growing research aims at the identification of molecular pathways underlying the aging trajectory of DS population, data on infants and adolescents with DS are missing.

METHODS: Neuronal-derived extracellular vesicles (nEVs) were isolated form healthy donors (HDs, n = 17) and DS children (n = 18) from 2 to 17 years of age and nEV content was interrogated for markers of insulin/mTOR pathways.

RESULTS: nEVs isolated from DS children were characterized by a significant increase in pIRS1Ser636, a marker of …


Premade Nanoparticle Films For The Synthesis Of Vertically Aligned Carbon Nanotubes, Abdul Hoque, Ahamed Ullah, Beth S. Guiton, Noe T. Alvarez Nov 2021

Premade Nanoparticle Films For The Synthesis Of Vertically Aligned Carbon Nanotubes, Abdul Hoque, Ahamed Ullah, Beth S. Guiton, Noe T. Alvarez

Chemistry Faculty Publications

Carbon nanotubes (CNTs) offer unique properties that have the potential to address multiple issues in industry and material sciences. Although many synthesis methods have been developed, it remains difficult to control CNT characteristics. Here, with the goal of achieving such control, we report a bottom-up process for CNT synthesis in which monolayers of premade aluminum oxide (Al2O3) and iron oxide (Fe3O4) nanoparticles were anchored on a flat silicon oxide (SiO2) substrate. The nanoparticle dispersion and monolayer assembly of the oleic-acid-stabilized Al2O3 nanoparticles were achieved using 11-phosphonoundecanoic acid …


Biotinylation As A Tool To Enhance The Uptake Of Small Molecules In Gram-Negative Bacteria, Ankit Pandeya, Ling Yang, Olaniyi Alegun, Chamikara Karunasena, Chad Risko, Zhenyu Li, Yinan Wei Nov 2021

Biotinylation As A Tool To Enhance The Uptake Of Small Molecules In Gram-Negative Bacteria, Ankit Pandeya, Ling Yang, Olaniyi Alegun, Chamikara Karunasena, Chad Risko, Zhenyu Li, Yinan Wei

Chemistry Faculty Publications

Antibiotic resistance is a major public health concern. The shrinking selection of effective antibiotics and lack of new development is making the situation worse. Gram-negative bacteria more specifically pose serious threat because of their double layered cell envelope and effective efflux systems, which is a challenge for drugs to penetrate. One promising approach to breach this barrier is the “Trojan horse strategy”. In this technique, an antibiotic molecule is conjugated with a nutrient molecule that helps the antibiotic to enter the cell through dedicated transporters for the nutrient. Here, we explored the approach using biotin conjugation with a florescent molecule …


The Primarily Undergraduate Nanomaterials Cooperative: A New Model For Supporting Collaborative Research At Small Institutions On A National Scale, Steven M. Huges, Mark P. Hendricks, Katherine M. Mullaugh, Mary E. Anderson, Anne K. Bently, Justin G. Clar, Clyde A. Daly Jr., Mark D. Ellison, Z. Vivian Feng, Natalia I. Gonzalex-Pech, Leslie S. Hamachi, Christine L. Heinecke, Joseph D. Keene, Adam M. Maley, Andrea M. Munro, Peter N. Njoki, Jacob H. Olshansky, Katherine E. Plass, Kathryn R. Riley, Matthew D. Sonntag, Sarah K. St. Angelo, Lucas B. Thompson, Emily J. Tollefson, Lauren E. Toote, Korin E. Wheeler Nov 2021

The Primarily Undergraduate Nanomaterials Cooperative: A New Model For Supporting Collaborative Research At Small Institutions On A National Scale, Steven M. Huges, Mark P. Hendricks, Katherine M. Mullaugh, Mary E. Anderson, Anne K. Bently, Justin G. Clar, Clyde A. Daly Jr., Mark D. Ellison, Z. Vivian Feng, Natalia I. Gonzalex-Pech, Leslie S. Hamachi, Christine L. Heinecke, Joseph D. Keene, Adam M. Maley, Andrea M. Munro, Peter N. Njoki, Jacob H. Olshansky, Katherine E. Plass, Kathryn R. Riley, Matthew D. Sonntag, Sarah K. St. Angelo, Lucas B. Thompson, Emily J. Tollefson, Lauren E. Toote, Korin E. Wheeler

Chemistry Faculty Publications

The Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations. Currently consisting of 37 members from across the United States, PUNC has created an online community consisting of its Web site (nanocooperative.org), a weekly online summer group meeting program for faculty and students, …


3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown Oct 2021

3d-Printable And Open-Source Modular Smartphone Visible Spectrophotometer, Brandon Winters, Nick Banfield, Cassandra Dixon, Anna Swensen, Dakota Holman, Braxton Fillbrown

Chemistry Faculty Publications

The past four decades have brought significant and increasingly rapid changes to the world of instrument design, fabrication, and availability due to the emergence of 3D printing, open-source code and equipment, and low-cost electronics. These, along with other technological advances represent a nexus in time ripe for the wide-spread production and availability of low-cost sophisticated scientific equipment. To that end, the design of a 3D printable and open-source, modular spectrometer is described. This specific instrument is distinctly different from others that have been reported in recent years in that it was designed outside of the “black box” paradigm of …