Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Bioelectrics Publications

Discipline
Keyword
Publication Year

Articles 1 - 20 of 20

Full-Text Articles in Chemistry

Fluid Model Of Plasma-Liquid Interaction: The Effect Of Interfacial Boundary Conditions And Henry's Law Constants, Yifan Liu, Dingxin Liu, Jishen Zhang, Bowen Sun, Santu Luo, Hao Zhang, Li Guo, Mingzhe Rong, Michael G. Kong Jan 2021

Fluid Model Of Plasma-Liquid Interaction: The Effect Of Interfacial Boundary Conditions And Henry's Law Constants, Yifan Liu, Dingxin Liu, Jishen Zhang, Bowen Sun, Santu Luo, Hao Zhang, Li Guo, Mingzhe Rong, Michael G. Kong

Bioelectrics Publications

Plasma–liquid interaction is a critical area of plasma science, mainly because much remains unknown about the physicochemical processes occurring at the plasma–liquid interface. Besides a lot of experimental studies toward the interaction, a few fluid models have also been reported in recent years. However, the interfacial boundary conditions in the models are different and the Henry's law constants therein are uncertain; hence, the accuracy and robustness of the simulation results are doubtable. In view of this, three 1D fluid models are developed for the interaction between a plasma jet and deionized water, each of which has a unique interfacial boundary …


Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino Jan 2021

Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino

Bioelectrics Publications

DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 >cm(-1)) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we …


Discharge Mode Transition In He/Ar Atmospheric Pressure Plasma Jet And Its Inactivation Effect Against Tumor Cells In Vitro, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Huaiyan Zhang, Feng Zhang, Xiamin Tantai, Dehui Xu, Dingxin Liu, Michael G. Kong Jan 2021

Discharge Mode Transition In He/Ar Atmospheric Pressure Plasma Jet And Its Inactivation Effect Against Tumor Cells In Vitro, Bolun Pang, Zhijie Liu, Sitao Wang, Yuting Gao, Huaiyan Zhang, Feng Zhang, Xiamin Tantai, Dehui Xu, Dingxin Liu, Michael G. Kong

Bioelectrics Publications

Discharge characteristic comparisons between He and Ar plasma jets have been extensively reported, but is rarely reported for the comprehensive study of discharge mode transition from He jet to Ar jet, especially its induced liquid chemistry and biological effect. In this paper, we investigate the plasma jet mode transformation by varying the Ar contents in the He/Ar mixing working gas, particularly focusing on the effect of liquid chemistry of plasma activated water (PAW) and the corresponding inactivation effect against tumor cells in vitro. The mode transition process from He jet to Ar jet is characterized by the discharge images, …


Oxygen Harvesting From Carbon Dioxide: Simultaneous Epoxidation And Co Formation, Han Xu, Muhammad Shaban, Sui Wang, Anas Alkayal, Dingxin Liu, Michael G. Kong, Felix Plasser, Benjamin R. Buckley, Felipe Iza Jan 2021

Oxygen Harvesting From Carbon Dioxide: Simultaneous Epoxidation And Co Formation, Han Xu, Muhammad Shaban, Sui Wang, Anas Alkayal, Dingxin Liu, Michael G. Kong, Felix Plasser, Benjamin R. Buckley, Felipe Iza

Bioelectrics Publications

Due to increasing concentrations in the atmosphere, carbon dioxide has, in recent times, been targeted for utilisation (Carbon Capture Utilisation and Storage, CCUS). In particular, the production of CO from CO2 has been an area of intense interest, particularly since the CO can be utilized in Fischer–Tropsch synthesis. Herein we report that CO2 can also be used as a source of atomic oxygen that is efficiently harvested and used as a waste-free terminal oxidant for the oxidation of alkenes to epoxides. Simultaneously, the process yields CO. Utilization of the atomic oxygen does not only generate a valuable product, …


Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov May 2020

Probing Nanoelectroporation And Resealing Of The Cell Membrane By The Entry Of Ca2+ And Ba2+ Ions, Wenfei Bo, Mantas Silkunas, Uma Mangalanathan, Vitalij Novickij, Maura Casciola, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

The principal bioeffect of the nanosecond pulsed electric field (nsPEF) is a lasting cell membrane permeabilization, which is often attributed to the formation of nanometer-sized pores. Such pores may be too small for detection by the uptake of fluorescent dyes. We tested if Ca2+, Cd2+, Zn2+, and Ba2+ ions can be used as nanoporation markers. Time-lapse imaging was performed in CHO, BPAE, and HEK cells loaded with Fluo-4, Calbryte, or Fluo-8 dyes. Ca2+ and Ba2+ did not change fluorescence in intact cells, whereas their entry after nsPEF increased fluorescence within <1 ms. The threshold for one 300-ns pulse was at 1.5–2 kV/cm, much lower than >7 …


Synthesis, Characterization, Dna Binding, Topoisomerase Inhibition, And Apoptosis Induction Studies Of A Novel Cobalt(Iii) Complex With A Thiosemicarbazone Ligand, Stephen J. Beebe, Michael J. Celestine, Jimmie L. Bullock, Shayna Sandhaus, Jessa Faye Arca, Donald M. Cropek, Tekettay A. Ludvig, Sydney R. Foster, Jasmine S. Clark, Floyd A. Beckford, Criszcele M. Tano, Elizabeth A. Tonsel-White, Raj K. Gurung, Courtney E. Stankavich, Yuk-Ching Tse-Dinh, William L. Jarrett, Alvin A. Holder Jan 2020

Synthesis, Characterization, Dna Binding, Topoisomerase Inhibition, And Apoptosis Induction Studies Of A Novel Cobalt(Iii) Complex With A Thiosemicarbazone Ligand, Stephen J. Beebe, Michael J. Celestine, Jimmie L. Bullock, Shayna Sandhaus, Jessa Faye Arca, Donald M. Cropek, Tekettay A. Ludvig, Sydney R. Foster, Jasmine S. Clark, Floyd A. Beckford, Criszcele M. Tano, Elizabeth A. Tonsel-White, Raj K. Gurung, Courtney E. Stankavich, Yuk-Ching Tse-Dinh, William L. Jarrett, Alvin A. Holder

Bioelectrics Publications

In this study, 9-anthraldehyde-N(4)-methylthiosemicarbazone (MeATSC) 1 and [Co(phen)2(O2CO)]Cl·6H2O 2 (where phen = 1,10-phenanthroline) were synthesized. [Co(phen)2(O2CO)]Cl·6H2O 2 was used to produce anhydrous [Co(phen)2(H2O)2(NO3)3 3. Subsequently, anhydrous [Co(phen)2(H2O)2] (NO3)3 3 was reacted with MeATSC 1 to produce [Co(phen)2(MeATSC)](NO3)3·1.5H2O·C2 H5OH 4. The ligand, MeATSC 1 and all complexes were characterized by elemental analysis, FT IR, UV–visible, and multinuclear NMR …


A Statistical Analytical Model For Hydrophilic Electropore Characterization: A Comparison Study, P. Marracino, M. Liberti, P.T. Vernier, F. Apollonio Jan 2017

A Statistical Analytical Model For Hydrophilic Electropore Characterization: A Comparison Study, P. Marracino, M. Liberti, P.T. Vernier, F. Apollonio

Bioelectrics Publications

Molecular dynamics (MD) simulations have proved to be a useful tool for unveiling many aspects of pore formation in lipid membranes under the influence of external electric fields. In order to compare the size-related properties of pores in bilayers of various compositions, generated and maintained under different physical and chemical conditions, reference metrics are needed for characterizing pore geometry and its evolution over time. In the present paper three different methodologies for evaluating electropore geometrical behavior will be compared: (i) the first allows analysis of the dimensions of the pore through an algorithm that uses a Monte Carlo simulated annealing …


A Novel Copper (Ii) Complex Identified As A Potent Drug Against Colorectal And Breast Cancer Cells And As A Poison Inhibitor For Human Topoisomerase Iiᶐ, Shayna Sandhaus, Rosella Taylor, Tiffany Edwards, Alexis Huddleston, Stephen J. Beebe, Alvin A. Holder Jan 2016

A Novel Copper (Ii) Complex Identified As A Potent Drug Against Colorectal And Breast Cancer Cells And As A Poison Inhibitor For Human Topoisomerase Iiᶐ, Shayna Sandhaus, Rosella Taylor, Tiffany Edwards, Alexis Huddleston, Stephen J. Beebe, Alvin A. Holder

Bioelectrics Publications

A novel complex, [Cu(acetylethTSC)Cl]Cl · 0.25C2H5OH 1 (where acetylethTSC = (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide), was shown to have anti-proliferative activity against various colon and aggressive breast cancer cell lines. In vitro studies showed that complex 1 acted as a poison inhibitor of human topoisomerase IIᶐ which may account for the observed anti-cancer effects.


Basic Features Of A Cell Electroporation Model: Illustrative Behavior For Two Very Different Pulses, Reuben S. Son, Kyle C. Smith, Thiruvallur R. Gowrishankar, P. Thomas Vernier, James C. Weaver Jan 2014

Basic Features Of A Cell Electroporation Model: Illustrative Behavior For Two Very Different Pulses, Reuben S. Son, Kyle C. Smith, Thiruvallur R. Gowrishankar, P. Thomas Vernier, James C. Weaver

Bioelectrics Publications

Science increasingly involves complex modeling. Here we describe a model for cell electroporation in which membrane properties are dynamically modified by poration. Spatial scales range from cell membrane thickness (5 nm) to a typical mammalian cell radius (10 μm), and can be used with idealized and experimental pulse waveforms. The model consists of traditional passive components and additional active components representing nonequilibrium processes. Model responses include measurable quantities: transmembrane voltage, membrane electrical conductance, and solute transport rates and amounts for the representative "long" and "short" pulses. The long pulse-1.5 kV/cm, 100 μs-evolves two pore subpopulations with a valley at ~5 …


Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach Jan 2005

Simulations Of Nanopore Formation And Phosphatidylserine Externalization In Lipid Membranes Subjected To A High-Intensity, Ultrashort Electric Pulse, Q. Hu, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV∕cm), ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the …


Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach Jan 2005

Predicted Properties Of Microhollow Cathode Discharges In Xenon, J. P. Boeuf, L. C. Pitchford, K. H. Schoenbach

Bioelectrics Publications

A fluid model has been developed and used to help clarify the physical mechanisms occurring in microhollow cathode discharges (MHCD). Calculated current-voltage (I-V) characteristics and gas temperatures in xenon at 100 Torr are presented. Consistent with previous experimental results in similar conditions, we find a voltage maximum in the I-V characteristic. We show that this structure reflects a transition between a low-current, abnormal discharge localized inside the cylindrical hollow cathode to a higher-current, normal glow discharge sustained by electron emission from the outer surface of the cathode. This transition, due to the geometry of …


Excimer Emission From Cathode Boundary Layer Discharges, Mohamed Moselhy, Karl H. Schoenbach Jan 2004

Excimer Emission From Cathode Boundary Layer Discharges, Mohamed Moselhy, Karl H. Schoenbach

Bioelectrics Publications

The excimer emission from direct current glow discharges between a planar cathode and a ring-shaped anode of 0.75 and 1.5 mm diameter, respectively, separated by a gap of 250 μm, was studied in xenon and argon in a pressure range from 75 to 760 Torr. The thickness of the “cathode boundary layer” plasma, in the 100 μm range, and a discharge sustaining voltage of approximately 200 V, indicates that the discharge is restricted to the cathode fall and the negative glow. The radiant excimer emittance at 172 nm increases with pressure and reaches a value of 4 W/cm2 for …


Argon Eximer Emission From High-Pressure Microdischarges In Mental Capillaries, R. Mohan Sankaran, Konstantinos P. Giapis, Mohamed Moselhy, Karl H. Schoenbach Jan 2003

Argon Eximer Emission From High-Pressure Microdischarges In Mental Capillaries, R. Mohan Sankaran, Konstantinos P. Giapis, Mohamed Moselhy, Karl H. Schoenbach

Bioelectrics Publications

We report on argon excimer emission from high-pressure microdischarges formed inside metal capillaries with or without gas flow. Excimer emission intensity from a single tube increases linearly with gas pressure between 400 and 1000 Torr. Higher discharge current also results in initial intensity gains until gas heating causes saturation or intensity drop. Argon flow through the discharge intensifies emission perhaps by gas cooling. Emission intensity was found to be additive in prealigned dual microdischarges, suggesting that an array of microdischarges could produce a high-intensity excimer source.


Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach Jan 2003

Comparison Between The Ultraviolet Emission From Pulsed Microhollow Cathode Discharges In Xenon And Argon, Isfried Petzenhauser, Leopold D. Biborosch, Uwe Ernst, Klaus Frank, Karl H. Schoenbach

Bioelectrics Publications

We measured the dynamic I–V characteristics and vacuum ultraviolet (VUV) emission lines of the second continuum in xenon (170 nm) and argon (130.5 nm) from pulsed microhollow cathode discharges (MHCD). For pulse lengths between 1 and 100 μs the dynamic I–V characteristics are similar in both inert gases. Only the time variation of the VUV emission line at 170 nm for xenon can be related to the dimer excited states. In argon the energy transfer between the Ar*2 dimers and the oxygen impurity atoms is responsible for a qualitatively different time behavior of the resonance line at 130.5 nm. …


Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach Jan 2002

Electrical Network-Based Time-Dependent Model Of Electrical Breakdown In Water, R. P. Joshi, J. Qian, K. H. Schoenbach

Bioelectrics Publications

A time-dependent, two-dimensional, percolative approach to model dielectric breakdown based on a network of parallel resistor–capacitor elements having random values, has been developed. The breakdown criteria rely on a threshold electric field and on energy dissipation exceeding the heat of vaporization. By carrying out this time-dependent analysis, the development and propagation of streamers and prebreakdown dynamical evolution have been obtained directly. These model simulations also provide the streamer shape, characteristics such as streamer velocity, the prebreakdown delay time, time-dependent current, and relationship between breakdown times, and applied electric fields for a given geometry. The results agree well with experimental data …


Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz Jan 2001

Xenon Excimer Emission From Pulsed Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz

Bioelectrics Publications

By applying electrical pulses of 20 ns duration to xenon microplasmas, generated by direct current microhollow cathode discharges, we were able to increase the xenon excimer emission by more than an order of magnitude over direct current discharge excimer emission. For pulsed voltages in excess of 500 V, the optical power at 172 nm was found to increase exponentially with voltage. Largest values obtained were 2.75 W of vacuum-ultraviolet optical power emitted from a single microhollow cathode discharge in 400 Torr xenon with a 750 V pulse applied to a discharge. Highest radiative emittance was 15.2 W/cm2. The …


Resonant Energy Transfer From Argon Dimers To Atomic Oxygen In Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz Jan 2001

Resonant Energy Transfer From Argon Dimers To Atomic Oxygen In Microhollow Cathode Discharges, M. Moselhy, R. H. Stark, K. H. Schoenbach, U. Kogelschatz

Bioelectrics Publications

The emission of atomic oxygen lines at 130.2 and 130.5 nm from a microhollow cathode discharge in argon with oxygen added indicates resonant energy transfer from argon dimers to oxygen atoms. The internal efficiency of the vacuum-ultraviolet (VUV) radiation was measured as 0.7% for a discharge in 1100 Torr argon with 0.1% oxygen added. The direct current VUV point source operates at voltages below 300 V and at current levels of milliamperes.


Microhollow Cathode Discharge Excimer Lamps, Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, Robert H. Stark Jan 2000

Microhollow Cathode Discharge Excimer Lamps, Karl H. Schoenbach, Ahmed El-Habachi, Mohamed M. Moselhy, Wenhui Shi, Robert H. Stark

Bioelectrics Publications

Microhollow cathode discharges are high-pressure, nonequilibrium gas discharges between a hollow cathode and a planar or hollow anode with electrode dimensions in the 100 μm range. The large concentration of high-energy electrons, in combination with the high-gas density favors excimer formation. Excimer emission was observed in xenon and argon, at wavelengths of 128 and 172 nm, respectively, and in argon fluoride and xenon chloride, at 193 and 308 nm. The radiant emittance of the excimer radiation was found to increase monotonically with pressure. However, due to the decrease in source size with pressure, the efficiency (ratio of excimer radiant power …


Generation Of Intense Excimer Radiation From High-Pressure Hollow Cathode Discharges, Ahmed El-Habachi, Karl H. Schoenbach Jan 1998

Generation Of Intense Excimer Radiation From High-Pressure Hollow Cathode Discharges, Ahmed El-Habachi, Karl H. Schoenbach

Bioelectrics Publications

By reducing the diameter of the cathode opening in a hollow cathode discharge geometry to values on the order of 100 μm, we were able to operate these discharges in noble gases in a direct current mode up to atmospheric pressure. High-pressure discharges in xenon were found to be strong sources of excimer radiation. Highest intensities at a wavelength of 172 nm were obtained at a pressure of 400 Torr. At this pressure, the vacuum ultraviolet (VUV) radiant power of a single discharge operating at a forward voltage of 220 V and currents exceeding 2 mA reaches values between 6% …


Microhollow Cathode Discharges, K. H. Schoenbach, R. Verhappen, R. Tessnow, F. E. Peterkin, W. W. Byszewski Jan 1996

Microhollow Cathode Discharges, K. H. Schoenbach, R. Verhappen, R. Tessnow, F. E. Peterkin, W. W. Byszewski

Bioelectrics Publications

The current–voltage characteristics of hollow cathode discharges and their predischarges in argon under dc and pulsed conditions were found to have a positive slope at pressures up to approximately 50 Torr, and currents up to 20 mA, at a hole diameter of 0.7 mm. In this range of pressure and current, parallel operation of hollow cathode discharges, without ballast, was demonstrated. Scaling to higher pressure is possible by reducing the hole diameter. Pulsed experiments with an array of cathode rings of 75 μm diameter allowed us to obtain parallel operation of more than 50 discharges at a pressure of 350 …