Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Coinage Metal Silylphosphido Complexes Stabilized By N-Heterocyclic Carbene Ligands, Bahareh Khalili Najafabadi Aug 2015

Coinage Metal Silylphosphido Complexes Stabilized By N-Heterocyclic Carbene Ligands, Bahareh Khalili Najafabadi

Electronic Thesis and Dissertation Repository

N-Heterocyclic carbenes (NHCs) are strong σ-donating ligands and thus, promising candidates for decorating and stabilizing metal-phosphide nanoclusters. While much research has been focused on the coordination of NHC ligands to different coinage metal centers in order to synthesize mononuclear organometallic complexes, their application in nanocluster chemistry has been relatively unexplored. The work described in this thesis involves employment of NHC ligands for stabilizing coinage metal t-butylthiolate and silylphosphido complexes. These complexes are promising molecular precursors for formation of larger NHC-stabilized nanoclusters.

In particular, the ligation of NHCs to [CuStBu] and [AgStBu] was developed as an …


Au Nanostructured Surfaces For Electrochemical And Localized Surface Plasmon Resonance-Based Monitoring Of Α-Synuclein-Small Molecule Interactions., Xin R Cheng, Gregory Q Wallace, François Lagugné-Labarthet, Kagan Kerman Feb 2015

Au Nanostructured Surfaces For Electrochemical And Localized Surface Plasmon Resonance-Based Monitoring Of Α-Synuclein-Small Molecule Interactions., Xin R Cheng, Gregory Q Wallace, François Lagugné-Labarthet, Kagan Kerman

Chemistry Publications

In this proof-of-concept study, the fabrication of novel Au nanostructured indium tin oxide (Au-ITO) surfaces is described for the development of a dual-detection platform with electrochemical and localized surface plasmon resonance (LSPR)-based biosensing capabilities. Nanosphere lithography (NSL) was applied to fabricate Au-ITO surfaces. Oligomers of α-synuclein (αS) were covalently immobilized to determine the electrochemical and LSPR characteristics of the protein. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed using the redox probe [Fe(CN)6](3-/4-) to detect the binding of Cu(II) ions and (-)-epigallocatechin-3-gallate (EGCG) to αS on the Au-ITO surface. Electrochemical and LSPR data were complemented by Thioflavin-T (ThT) …


Au Nanostructured Surfaces For Electrochemical And Localized Surface Plasmon Resonance-Based Monitoring Of Α-Synuclein-Small Molecule Interactions., Xin R Cheng, Gregory Q Wallace, François Lagugné-Labarthet, Kagan Kerman Feb 2015

Au Nanostructured Surfaces For Electrochemical And Localized Surface Plasmon Resonance-Based Monitoring Of Α-Synuclein-Small Molecule Interactions., Xin R Cheng, Gregory Q Wallace, François Lagugné-Labarthet, Kagan Kerman

Chemistry Publications

In this proof-of-concept study, the fabrication of novel Au nanostructured indium tin oxide (Au-ITO) surfaces is described for the development of a dual-detection platform with electrochemical and localized surface plasmon resonance (LSPR)-based biosensing capabilities. Nanosphere lithography (NSL) was applied to fabricate Au-ITO surfaces. Oligomers of α-synuclein (αS) were covalently immobilized to determine the electrochemical and LSPR characteristics of the protein. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed using the redox probe [Fe(CN)6](3-/4-) to detect the binding of Cu(II) ions and (-)-epigallocatechin-3-gallate (EGCG) to αS on the Au-ITO surface. Electrochemical and LSPR data were complemented by Thioflavin-T (ThT) …