Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Virginia Commonwealth University

Theses and Dissertations

Nanoparticle

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii Jan 2015

Synthesis, Surface Functionalization, And Biological Testing Of Iron Oxide Nanoparticles For Development As A Cancer Therapeutic, Stanley E. Gilliland Iii

Theses and Dissertations

Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in …


The Design And Synthesis Of Magnetic Nanocomposites, Daniel Hudgins Dec 2013

The Design And Synthesis Of Magnetic Nanocomposites, Daniel Hudgins

Theses and Dissertations

Magnetism lies at the core of modern technology and can be found in industries such as oil refining, automotive, telecommunications, personal electronics, and power generation that are integral to our day to day lives. This permeation into everyday life has been enhanced in the past several decades with improvements in material design based upon the principles of nanotechnology leading to smaller, faster, and more efficient devices. The presented research will discuss the synthesis and processing of multiple magnetic nanoparticle structures designed for the enhancement of various, application specific, properties. In the first experiments a tunable core/shell structure was developed with …


Characterization Of Stabilized Palladium Nanocatalysts, Meghann Broderick Jun 2010

Characterization Of Stabilized Palladium Nanocatalysts, Meghann Broderick

Theses and Dissertations

Metal nanoparticles have received much interest for their application in catalysis due to high surface-to-volume ratios resulting in more available active sites. Ideally these catalysts are heterogeneous and allow for facile separation from the catalytic reaction mixture making them ideal for industrial application. Dispersed metal nanoparticles are explored due to their high reactivity in solution and are stabilized by surfactants and polymers. However, it is difficult to determine whether or not a catalyst is truly heterogeneous as a certain degree of leaching from the metal nanoparticle is inevitable. Determining the mechanisms involved in nanocatalysis is also a challenge. In this …


Quantitative Model For The Prediction Of Hydrodynamic Size Of Nonionic Reverse Micelles, Melissa A. Michaels Jan 2006

Quantitative Model For The Prediction Of Hydrodynamic Size Of Nonionic Reverse Micelles, Melissa A. Michaels

Theses and Dissertations

The sizes of nonionic reverse micelles were investigated as a function of the molecular structure of the surfactant, the type of oil, the total concentration of surfactant [NP], the ratio of NP4 to total surfactant (r), the water to surfactant molar ratio (ω), temperature, salt concentration, and polar phase. The basis of our investigation was nonylphenol polyethoxylates - NP4 and NP7. Micelle sizes were determined using dynamic light scattering (DLS). A central composite experimental design was used to quantitatively model reverse micelle size as a function of ω, [NP], and r. The model has demonstrated the capability of predicting the …