Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Oxygen Binding Thermodynamics Of Human Hemoglobin In The Red Blood Cell, Kyle K. Hill Mar 2021

Oxygen Binding Thermodynamics Of Human Hemoglobin In The Red Blood Cell, Kyle K. Hill

Department of Chemistry: Dissertations, Theses, and Student Research

We report for the first time the binding constants and Hill numbers for oxygen in the red blood cell under physiological conditions. When compared to our results for hemoglobin in solution, our results show conclusively that hemoglobin binds oxygen more tightly and with lower co-operativity when packed in the red blood cell. At 18°C, these differences are striking: the respective half-saturation values are 15.57 µM (in red blood cells) and 18.83 µM (in solution), with corresponding Hill numbers of 2.475 (in red blood cells) and 2.949 (in solution). The optical complications that arise from high turbidity of red blood cell …


Binding Of Oxygen To Human Hemoglobin Within The Erythrocyte Using Icam Spectrophotometry, Kyle K. Hill Apr 2016

Binding Of Oxygen To Human Hemoglobin Within The Erythrocyte Using Icam Spectrophotometry, Kyle K. Hill

Department of Chemistry: Dissertations, Theses, and Student Research

Many of the spectrophotometric techniques used to determine the properties of intracellular human hemoglobin cannot be utilized due to the turbidity of erythrocyte suspensions. An Integrating Cavity Absorption Meter, or ICAM, allows for absorption measurements of strongly scattering samples in the visible-light region of the spectrum. The spectrum of oxygenated hemoglobin within erythrocytes is significantly different from the absorption spectrum of oxygenated hemoglobin in solution. Studies of the oxygen binding to hemoglobin in erythrocytes allowed the four sequential binding constants (Adair constants) to be determined and compared with those of hemoglobin in solution. The Adair constants for hemoglobin in solution …


Mechanisms Of Hemoglobin Adaptation To High Altitude Hypoxia, Jay F. Storz, Hideaki Moriyama Jan 2008

Mechanisms Of Hemoglobin Adaptation To High Altitude Hypoxia, Jay F. Storz, Hideaki Moriyama

Hideaki Moriyama Publications

Evidence from a number of vertebrate taxa suggests that modifications of hemoglobin (Hb) function may often play a key role in mediating an adaptive response to high altitude hypoxia. The respiratory functions of Hb are a product of the protein’s intrinsic O2-binding affinity and its interactions with allosteric effectors such as protons, chloride ions, CO2, and organic phosphates. Here we review several case studies involving high altitude vertebrates where it has been possible to identify specific mechanisms of Hb adaptation to hypoxia. In addition to comparative studies of Hbs from diverse animal species, functional studies of …


Mechanisms Of Hemoglobin Adaptation To High Altitude Hypoxia, Jay F. Storz, Hideaki Moriyama Jan 2008

Mechanisms Of Hemoglobin Adaptation To High Altitude Hypoxia, Jay F. Storz, Hideaki Moriyama

Hideaki Moriyama Publications

Evidence from a number of vertebrate taxa suggests that modifications of hemoglobin (Hb) function may often play a key role in mediating an adaptive response to high altitude hypoxia. The respiratory functions of Hb are a product of the protein’s intrinsic O2-binding affinity and its interactions with allosteric effectors such as protons, chloride ions, CO2, and organic phosphates. Here we review several case studies involving high altitude vertebrates where it has been possible to identify specific mechanisms of Hb adaptation to hypoxia. In addition to comparative studies of Hbs from diverse animal species, functional studies of …