Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

University of Mississippi

2021

Synthesis

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Applications Of Sodium Azide In The Synthesis Of Tetrazines And Hydrolysis Reactions, My Le May 2021

Applications Of Sodium Azide In The Synthesis Of Tetrazines And Hydrolysis Reactions, My Le

Honors Theses

The inverse electron demand Diels−Alder cycloadditions of heterocyclic azadienes have provided a robust methodology for synthesizing highly substituted and functionalized heterocycles. It is widely used in organic synthesis and the pharmaceutical industry in the divergent construction of screening libraries and bioorthogonal conjugation. Each heterocyclic azadiene was found to possess a unique reactivity toward different classes of dienophiles, display predictable modes of cycloaddition, and exhibit substantial substituent electronic effects impacting their intrinsic reactivity and cycloaddition regioselectivity. Synthesis of 1,2,4,5-tetrazine has been reported in the literature since the late 19th century, showing scientists' tremendous interest in its application.

Herein we attempt to …


Synthesis Of A Dd-Π-Aa Organic Dye For Dye-Sensitized Solar Cells, Hope Lovell May 2021

Synthesis Of A Dd-Π-Aa Organic Dye For Dye-Sensitized Solar Cells, Hope Lovell

Honors Theses

This project investigates the synthesis of a DD-π-AA (dual donor/dual acceptor) organic dye as a potential sensitizer for dye-sensitized solar cells (DSCs). The design of this dye was based off previous research that found dual donor/dual acceptor dyes exhibited promising results when used in a DSC. The donor groups, acceptor groups, and π-bridge were chosen for their stability, ability to absorb in the near-infrared (NIR) region, and intramolecular charge transfer (ICT) abilities.

While many components of the dye were synthesized, the final stages of the synthetic scheme were not completed due to the loss of time from COVID-19. Had the …