Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Chemistry

Polymer-Based Nanotherapeutics To Combat Difficult-To-Treat Bacterial Infections, Jessa Marie V. Makabenta Nov 2023

Polymer-Based Nanotherapeutics To Combat Difficult-To-Treat Bacterial Infections, Jessa Marie V. Makabenta

Doctoral Dissertations

The continuous emergence and spread of antibiotic-resistant bacteria are a global health emergency, debilitating the capability to prevent and cure various infectious diseases that were once treatable. Antibiotic therapy is further rendered ineffective due to biofilm formation and the ability of bacteria to thrive and colonize inside mammalian cells. Given the diminishing efficacy of available antibiotics combined with the scarcity of new therapeutics entering the antibiotic pipeline, innovative treatment strategies are urgently in demand. Nanomaterial-based strategies offer ‘outside of the box’ approach for the treatment of antibiotic-resistant bacterial infections. Nanomaterials feature tunable physicochemical properties that can be carefully modified to …


Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov Nov 2023

Reactive Chemistries For Protein Labeling, Degradation, And Stimuli Responsive Delivery, Myrat Kurbanov

Doctoral Dissertations

Reactive chemistries for protein chemical modification play an instrumental role in chemical biology, proteomics, and therapeutics. Depending on the application, the selectivity of these modifications can range from precise modification of an amino acid sequence by genetic manipulation of protein expression machinery to a stochastic modification of lysine residues on the protein surface. Ligand-Directed (LD) chemistry is one of the few methods for targeted modification of endogenous proteins without genetic engineering. However, current LD strategies are limited by stringent amino acid selectivity. To bridge this gap, this thesis focuses on the development of highly reactive LD Triggerable Michael Acceptors (LD-TMAcs) …


Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe Nov 2023

Machine Learning Modeling Of Polymer Coating Formulations: Benchmark Of Feature Representation Schemes, Nelson I. Evbarunegbe

Masters Theses

Polymer coatings offer a wide range of benefits across various industries, playing a crucial role in product protection and extension of shelf life. However, formulating them can be a non-trivial task given the multitude of variables and factors involved in the production process, rendering it a complex, high-dimensional problem. To tackle this problem, machine learning (ML) has emerged as a promising tool, showing considerable potential in enhancing various polymer and chemistry-based applications, particularly those dealing with high dimensional complexities.

Our research aims to develop a physics-guided ML approach to facilitate the formulations of polymer coatings. As the first step, this …


Applying Density Functional Theory Simulations To Study The Charge Balancing And Structure Directing Roles Of Fluoride In Zeolite Synthesis, Tongkun Wang Nov 2023

Applying Density Functional Theory Simulations To Study The Charge Balancing And Structure Directing Roles Of Fluoride In Zeolite Synthesis, Tongkun Wang

Doctoral Dissertations

Zeolites represent a major cornerstone of today’s energy industry as the most-used petrochemical catalyst by weight in the world. Constituted by tetrahedra of T-atoms including Si, Al, Ge and Ti, zeolites form a huge family of nano-porous crystalline materials which also provide reliable candidates for novel, energy related applications such as efficient separations, hydrogen-purifying/storing and conversions from biomass to biofuel. However, the formation mechanism of zeolite is still not clear, as synthesis processes are complicated by requirements including structure directing agents (SDAs), hydroxide or fluoride medium, and experimental conditions like temperature. Attempts for designing new zeolite structures still fall in …


Atomistic Simulations Of Intrinsically Disordered Protein Folding And Dynamics, Xiping Gong Nov 2023

Atomistic Simulations Of Intrinsically Disordered Protein Folding And Dynamics, Xiping Gong

Doctoral Dissertations

Intrinsically disordered proteins (IDPs) are crucial in biology and human diseases, necessitating a comprehensive understanding of their structure, dynamics, and interactions. Atomistic simulations have emerged as a key tool for unraveling the molecular intricacies and establishing mechanistic insights into how these proteins facilitate diverse biological functions. However, achieving accurate simulations requires both an appropriate protein force field capable of describing the energy landscape of functionally relevant IDP conformations and sufficient conformational sampling to capture the free energy landscape of IDP dynamics. These factors are fundamental in comprehending potential IDP structures, dynamics, and interactions. I first conducted explicit solvent simulations to …


Development Of Biomolecule Nanoparticle Conjugate For Targeted Delivery Of Therapeutics, Peidong Wu Apr 2023

Development Of Biomolecule Nanoparticle Conjugate For Targeted Delivery Of Therapeutics, Peidong Wu

Doctoral Dissertations

Delivery of therapeutics specifically to the disease site is the final goal for the field of drug discovery. Considerable efforts in understanding disease biology have contributed to identifying novel therapeutics such as small molecules, proteolysis targeting chimeras (PROTACs), peptides, proteins, and nucleic acids. However, improving their efficacy as well as minimizing their off-target toxicity remains challenging. Developing vectors that could not only efficiently encapsulate these therapeutics but also direct these therapeutics to the target site is a potential solution to address these challenges. In this dissertation, a block-copolymer-based nanoparticle platform has been developed optimized, and decorated with various kinds of …


Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil Apr 2023

Controlling Mechanical Properties Of Well-Defined Polymer Networks, Ipek Sacligil

Doctoral Dissertations

Polymer networks are one of the most versatile and highly studied material class that revolutionized many aspects of life. Connecting the final network properties to the molecular parameters of its building blocks remains a major research thrust. Recent advances in network synthesis techniques allowed for accurate predictions of elastic modulus in model networks. Tew Group has developed highly efficient, thiol-norbornene networks with controllable mechanical properties. Chapter 2 focuses on modifying the gel fracture energy predicted by Lake-Thomas theory by accounting for loop defects. This study allowed for a priori estimates of gel fracture energy by combining theory, experiments, and simulations. …


Determining Bond Strengths And Dissociation Dynamics Of Diatomic Metal-Containing Ions By Photofragment Imaging, Schuyler P. Lockwood Apr 2023

Determining Bond Strengths And Dissociation Dynamics Of Diatomic Metal-Containing Ions By Photofragment Imaging, Schuyler P. Lockwood

Doctoral Dissertations

Studies of simple metal ion – ligand complexes have primarily focused on understanding their roles in activating C-H and C-C bonds. However, data are often lacking on the fundamental properties of these species, which can have unusual bond orders and cluttered electronic structures with many states of multi-reference character, complicating their treatment in theoretical studies. Experimental work determining high-precision bond energies, ground state identities and excited state dynamics of a wider variety of metal-containing ions is needed to establish a robust set of well-characterized benchmark molecules. This work describes studies of the energetics and dynamics of several MX+ species, …


Scanning Probe And Spectroscopic Investigations Of Polarization-Driven Electronic Interactions At The Inorganic/Organic Interface Of 2d Materials, Nicholas Hight-Huf Apr 2023

Scanning Probe And Spectroscopic Investigations Of Polarization-Driven Electronic Interactions At The Inorganic/Organic Interface Of 2d Materials, Nicholas Hight-Huf

Doctoral Dissertations

My thesis focuses on understanding the changes in electronic properties of two-dimensional materials produced by surface interactions not limited to charge exchange. Recent work from our group demonstrated that both small molecules and polymers can function as effective charge dopants for monolayered 2D materials such as MoS2 and graphene, changing the Fermi energy by either donating or accepting electron density to/from the 2D material. Additionally, the underlying support material was found to play a significant role, where higher dielectric constant supports result in larger magnitude of Fermi energy shift of the 2D material because less of the dopant interaction …


Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh Apr 2023

Effect Of Chemical Identity And Morphology On Amphiphilic-Zwitterionic Block Copolymer Membranes, Ria Ghosh

Doctoral Dissertations

Amphiphilic block copolymers have gained a broad research interest attributed to their self-assembly properties over a range of pH, temperature, and ionic strength. Polyzwitterions have attracted special attention due to their hydrophilicity, charge sensitivity and coulombic attraction of the opposite charges over a range of environments making them a popular material of study in the field of stimuli responsive systems, for example in self-healing hydrogels, and water transport membranes. Combining the stimuli responsiveness and higher hydrophilicity of zwitterionic polymers with self-assembly behavior of amphiphilic block copolymers created an interest to study the effect of composition and identity of the zwitterionic …


Vapor Deposition Of Self-Wrinkling Polymer Films, Robert N. Enright Apr 2023

Vapor Deposition Of Self-Wrinkling Polymer Films, Robert N. Enright

Doctoral Dissertations

Initiated chemical vapor deposition is used to grow polymer films on substrates of various three-dimensional shapes which exhibit wrinkling during film growth, termed self-wrinkling. Self-wrinkling avoids separate film growth and compression steps and more-closely mimics processes observed in nature. The self-wrinkling process is elucidated on flat elastic substrates, revealing control over the amount of compressive stress by changing deposition conditions. Next, a study of films grown on liquid substrates with interface profiles that either resemble cylinders or contain repeating concave cones, saddles, and bowls affirms the principle that the wrinkle roundness increases with interface curvature. The selection of high versus …