Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

South Dakota State University

Electronic Theses and Dissertations

Toxicity

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Deep Eutectic Solvents Synthesis, Characterization And Applications In Pretreatment Of Lignocellulosic Biomass, Ganesh Degam Jan 2017

Deep Eutectic Solvents Synthesis, Characterization And Applications In Pretreatment Of Lignocellulosic Biomass, Ganesh Degam

Electronic Theses and Dissertations

There has been an increased interest in green solvents and biofuels with the growing environmental awareness across the globe. Conventional methods of biofuel production involve the use of large quantities of molecular solvents and ionic liquids (ILs), but they have the drawbacks of high vapor pressure (organic solvents), toxicity, and recyclability in terms of a sustainability point of view. Deep eutectic solvents (DESs) have recently emerged as green alternatives to molecular solvents and ionic liquids (ILs). They are defined as eutectic mixtures formed between quaternary ammonium, phosphonium or sulfonium salts and hydrogen bond donors (HBDs) with the freezing temperature lower …


Comprehensive Structural, Thermal And Toxicological Characterization Of 1-Ethyl-3-Methylimidazolium Alkylbenzenesulfonate Ionic Liquids, Hiranmayee Kandala Jan 2017

Comprehensive Structural, Thermal And Toxicological Characterization Of 1-Ethyl-3-Methylimidazolium Alkylbenzenesulfonate Ionic Liquids, Hiranmayee Kandala

Electronic Theses and Dissertations

Synthesis and characterization of 1-ethyl-3- methylimidazolium alkylbenzenesulfonate ionic liquids for extraction of lignin from prairie cord grass have been studied. The ionic liquids (ILs) 1-ethyl-3- methylimidazolium benzenesulfonate (EBS), 1-ethyl-3- methylimidazolium toluenesulfonate (ETS) and 1-ethyl-3- methylimidazolium xylenesulfonate (EXS) have been synthesized in this research. An extensive structural, physical, thermal and toxicological characterization has been performed to understand the behavior of these ionic liquids. The reaction yield for the synthesis of EBS, ETS, and EXS ionic liquids was determined to be 91.2 ± 1.5 %, 96.1 ± 0.7 %, 99.0 ± 0.5 % respectively. Spectral analysis using NMR and FTIR confirms the …