Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemistry

Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta M. Gillner, Daniel P. Becker Ph.D., Richard C. Holz Feb 2018

Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta M. Gillner, Daniel P. Becker Ph.D., Richard C. Holz

Richard C. Holz

In this review, we summarize the recent literature on dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure–function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.


Identification Of A Histidine Metal Ligand In The Arge-Encoded N-Acetyl-L-Ornithine Deacetylase From Escherichia Coli, Wade C. Mcgregor, Danuta M. Gillner, Sabina I. Swierczek, Dali Liu, Richard C. Holz Feb 2018

Identification Of A Histidine Metal Ligand In The Arge-Encoded N-Acetyl-L-Ornithine Deacetylase From Escherichia Coli, Wade C. Mcgregor, Danuta M. Gillner, Sabina I. Swierczek, Dali Liu, Richard C. Holz

Richard C. Holz

The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the …


Identification Of A Histidine Metal Ligand In The Arge-Encoded N-Acetyl-L-Ornithine Deacetylase From Escherichia Coli, Wade C. Mcgregor, Danuta Gillner, Sabina I. Swierczek, Dali Liu, Richard C. Holz Mar 2015

Identification Of A Histidine Metal Ligand In The Arge-Encoded N-Acetyl-L-Ornithine Deacetylase From Escherichia Coli, Wade C. Mcgregor, Danuta Gillner, Sabina I. Swierczek, Dali Liu, Richard C. Holz

Richard C. Holz

The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the …


Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta Gillner, Daniel P. Becker, Richard C. Holz Dec 2014

Lysine Biosynthesis In Bacteria: A Metallodesuccinylase As A Potential Antimicrobial Target, Danuta Gillner, Daniel P. Becker, Richard C. Holz

Richard C. Holz

In this review, we summarize the recent literature on dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure–function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.


Investigation Of The Physical And Electronic Properties Of Indium Doped Zinc Oxide Nanofibers Synthesized By Electrospinning, A. F. Lotus, Y. C. Kang, R. D. Ramsier, George G. Chase Apr 2014

Investigation Of The Physical And Electronic Properties Of Indium Doped Zinc Oxide Nanofibers Synthesized By Electrospinning, A. F. Lotus, Y. C. Kang, R. D. Ramsier, George G. Chase

George G Chase

Nanostructured metal oxides and particularly nanofiber based materials can provide significant advances for the miniaturization of electronic, optoelectronic, photonic, sensor, and energy conversion devices with enhanced performance based on their unique material properties. In this study, indium doped zinc oxide (IZO) nanofibers were synthesized by electrospinning. These nanofibers have diameters in the range 50-100 nm. The effects of indium addition on the structural, optical, and electrical properties of the zinc oxide nanofiber matrices were investigated. The IZO nanofibers undergo significant changes in their optical and electrical properties compared to undoped zinc oxide nanofibers.