Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Enabling Method To Design Versatile Biomaterial Systems From Colloidal Building Blocks, Shalini Saxena, L. Andrew Lyon Jan 2016

Enabling Method To Design Versatile Biomaterial Systems From Colloidal Building Blocks, Shalini Saxena, L. Andrew Lyon

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Development of materials with fine spatial control over topographical, mechanical, or chemical features has been investigated for a variety of applications. Here we present a method to fabricate an array of polyelectrolyte constructs including two-dimensionally and three-dimensionally patterned assemblies using both compressible and incompressible colloidal building blocks. This method eliminates prior constraints associated with specific chemistries, and can be used to develop modular, multi-component, patterned assemblies. In particular, development of constructs were investigated using microgels, which are colloidally stable hydrogel microparticles, polystyrene (PS) beads, and PS-microgel core-shell building blocks in conjunction with the polycation poly(ethyleneimine) (PEI). The topography, mechanical properties, …


Bulk Modulus Of Poly(N-Isopropylacrylamide) Microgels Through The Swelling Transition, B. Sierra-Martin, Y. Laporte, A. B. South, L. Andrew Lyon, A. Fernandez-Nieves Jan 2011

Bulk Modulus Of Poly(N-Isopropylacrylamide) Microgels Through The Swelling Transition, B. Sierra-Martin, Y. Laporte, A. B. South, L. Andrew Lyon, A. Fernandez-Nieves

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report measurements of the bulk modulus of individual poly(N-isopropylacrylamide) microgels along their swelling transition. The modulus is determined by measuring the volume deformation of the microgel as a function of osmotic pressure using dextran solutions. We find that the modulus softens through the transition, displaying a nonmonotonous behavior with temperature. This feature is correctly reproduced by the theory of Flory for polymer gels, once the concentration dependence of the solvency parameter is properly incorporated.