Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Chemistry

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony Apr 2022

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law -- …


Preparation And Characterization Of Single Layer Conducting Polymer Electrochromic And Touchchromic Devices, Sharan Kumar Indrakar Jul 2021

Preparation And Characterization Of Single Layer Conducting Polymer Electrochromic And Touchchromic Devices, Sharan Kumar Indrakar

USF Tampa Graduate Theses and Dissertations

Electrochromic devices (ECDs) have triggered great interest because of their potential applicability in energy-efficient buildings and low power display systems, including reflective type smart windows/mirrors and wearable-flexible devices. In the past decades, electrochromic technologies with different device structures and materials have been proposed. The idea of employing a simple device structure with a durable, cost effective electrolyte is crucial to designing and manufacturing high-performance ECDs. With this idea in mind, this thesis describes the various efforts to develop a simple ECD comprising of a composite single active layer gel electrolyte, sandwiched between two transparent conducting electrodes, lasting over 10,000 cycles …


An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh Feb 2021

An Investigation Of Cross-Links On Crystallization And Degradation In A Novel, Photocross-Linkable Poly (Lactic Acid) System, Nicholas Baksh

USF Tampa Graduate Theses and Dissertations

Polymeric molecular structure consists of repeating units bonded together. Mechanicalproperties can be altered without affecting chemical makeup by altering the number of these units. Small molecules can be introduced and/or polymers can be modified to form bonds between molecular chains. Cross-linking, as this is called, also introduces mechanical variation with minimal effects on chemical composition. Lastly, polymer chains reorient themselves in response to intermolecular forces. This temperature dependent response is known as crystallization. Although chemistry is unaltered, mechanical properties can depend highly on the percent of the sample that is crystallized.

Cross-linking is known to enhance the mechanical properties of …


Formulation To Application: Thermomechanical Characterization Of Flexible Polyimides And The Improvement Of Their Properties Via Chain Interaction, Alejandro Rivera Nicholls Nov 2019

Formulation To Application: Thermomechanical Characterization Of Flexible Polyimides And The Improvement Of Their Properties Via Chain Interaction, Alejandro Rivera Nicholls

USF Tampa Graduate Theses and Dissertations

In this work, Polyimides were synthesized by incorporating an aromatic diamine monomer with a methylene linker, 4,4'-methylenebis(2,6-dimethylaniline) (MBDMA), to make a robust main chain along with aliphatic polyetherdiamine backbone linkers to reduce rigidity. The polymers were designed to exhibit thermal properties in between those of conventional aromatic polyimides and polymers with wholly aliphatic ether diamine links. Through dynamic mechanical analysis and differential scanning calorimetry, it is shown that control of the molar ratios of the aromatic MBDMA and the composition and size of the aliphatic polyetherdiamine can be used to tune the glass transition temperature. The materials were characterized and …


Thermo-Oxidative Degradation Of Hdpe Geomembranes: Effect Of Phenolic Antioxidant And Hindered Amine Light Stabilizer Concentrations, Yasin Kocak Oct 2019

Thermo-Oxidative Degradation Of Hdpe Geomembranes: Effect Of Phenolic Antioxidant And Hindered Amine Light Stabilizer Concentrations, Yasin Kocak

USF Tampa Graduate Theses and Dissertations

High density polyethylene (HDPE) geomembrane is most common geomembrane which is mainly used for civil engineering applications. However, HDPE geomembrane loses its properties under oxidative degradation progress. This study aims to assess geomembranes which have different percentage of phenolic antioxidant and hindered amine light stabilizer (HALS) with under the six months of the thermal-oxidative degradation. The interactions between phenolic antioxidant, HALS and carbon black can affect the mechanical, physical and chemical properties. To monitor these properties, Differential Scanning Calorimetry (DSC), Fourier-transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM/EDX), Melt Index tests, …


Conducting Polymer Based Gel Electrolytes For Ph Sensitivity, Aditya Jagannath Kashyap Mar 2019

Conducting Polymer Based Gel Electrolytes For Ph Sensitivity, Aditya Jagannath Kashyap

USF Tampa Graduate Theses and Dissertations

The evaluation of concentration of ions and molecules with the help of biosensors have been regarded as an emerging technology. Bio and chemical sensors have a variety of applications in the field of medicine, military, environmental and food industries alike. With an estimated investment growth of over 4.31% in the development of pH sensors in the next five year, the objective of a developing a robust measurement system is all the more required. The scope of this research is to evaluate the ability of conducting polymer-based gel electrolytes for pH sensitivity, as a function of the transistor characteristics using an …


Characterization Of Nylon-12 In A Novel Additive Manufacturing Technology, And The Rheological And Spectroscopic Analysis Of Peg-Starch Matrix Interactions, Garrett Michael Craft Apr 2018

Characterization Of Nylon-12 In A Novel Additive Manufacturing Technology, And The Rheological And Spectroscopic Analysis Of Peg-Starch Matrix Interactions, Garrett Michael Craft

USF Tampa Graduate Theses and Dissertations

In this work differential scanning calorimetry, dynamic mechanical analysis, Fourier-Transformed Infrared Spectroscopy [FT-IR] and polarized light microscopy will be employed to characterize polymeric systems. The first chapter broadly covers polymer synthesis and important characterization methods.

In the second chapter, a polyamide (PA12) will be sintered via a novel additive manufacturing (AM) technology developed here at USF termed LAPS (Large Area Projection Sintering). LAPS uses extended sintering timespans to ensure complete melting and densification of the polymer powder over the entire two-dimensional area of the part’s footprint. Further, it allows for the printed layer to crystallize and shrink in its entirety …


Elastin-Like Polypeptide Fusion Tag As A Protein-Dependent Solubility Enhancer Of Cysteine-Knot Growth Factors, Tamina L. Johnson Apr 2018

Elastin-Like Polypeptide Fusion Tag As A Protein-Dependent Solubility Enhancer Of Cysteine-Knot Growth Factors, Tamina L. Johnson

USF Tampa Graduate Theses and Dissertations

Elastin-like peptide (ELP) fusions promote therapeutic delivery and efficacy. Recombinant proteins, like neurotrophins, lack bioavailability, have short in vivo half-lives, and require high manufacturing costs. Fusing recombinant proteins with genetically encodable ELPs will increase bioavailability, enhance in vivo solubilization, as well as provide a cost-effective method for purification without the need for chromatography. During expression of neurotrophin-ELP (N-ELP) fusions, dense water-insoluble aggregates known as inclusion bodies (IBs) are formed. Inclusion bodies are partially and misfolded proteins that usually require denaturants like Urea for solubilization. Strong denaturants arrest ELPs stimuli-responsive property and increase unwanted aggregation, making purification difficult, yet possible. The …


Synthesis, Modification, Characterization And Processing Of Molded And Electrospun Thermoplastic Polymer Composites And Nanocomposites, Tamalia Julien Mar 2018

Synthesis, Modification, Characterization And Processing Of Molded And Electrospun Thermoplastic Polymer Composites And Nanocomposites, Tamalia Julien

USF Tampa Graduate Theses and Dissertations

This dissertation focuses on the versatility and integrity of a novel, ultrasoft polycarbonate polyurethane (PCPU) by the introduction of nanoparticles and lithium salts. Additionally, the research takes into account the use of electrospinning as a technique to create PCPU and polyimide (PI) fibers. These polymers are of interest as they offer a wide range of properties and uses within the medical and industrial fields.

An industrial batch of an ultrasoft thermoplastic polyurethane (TPU) was synthesized using a two-step process. The first was to create an end capped pre-polymer from methylene bis (4-cyclohexylisocyanate), and a polycarbonate polyol made up of 1,6- …


Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark Jun 2017

Photopolymerization Synthesis Of Magnetic Nanoparticle Embedded Nanogels For Targeted Biotherapeutic Delivery, Daniel Jonwal Denmark

USF Tampa Graduate Theses and Dissertations

Conventional therapeutic techniques treat the patient by delivering a biotherapeutic to the entire body rather than the target tissue. In the case of chemotherapy, the biotherapeutic is a drug that kills healthy and diseased cells indiscriminately which can lead to undesirable side effects. With targeted delivery, biotherapeutics can be delivered directly to the diseased tissue significantly reducing exposure to otherwise healthy tissue. Typical composite delivery devices are minimally composed of a stimuli responsive polymer, such as poly(N-isopropylacrylamide), allowing for triggered release when heated beyond approximately 32 °C, and magnetic nanoparticles which enable targeting as well as provide a mechanism for …


Synthesis And Characterization Of Novel Polyurethanes And Polyimides, Kenneth Kull Nov 2016

Synthesis And Characterization Of Novel Polyurethanes And Polyimides, Kenneth Kull

USF Tampa Graduate Theses and Dissertations

Four novel high performance soft thermoplastic polyurethane elastomers utilizing methylene bis(4-cyclohexylisocyanate) as a hard segment, 1,4 butanediol as a chain extender and modified low crystallinity carbonate copolymer as a soft segment were synthesized. The samples were characterized by infrared spectroscopy (FTIR), tensile, elongation, hardness, abrasion resistance and atomic force microscopy (AFM). SAXS data shows evidence of an interdomain "center-to-center" distance of 45Å. DSC traces show evidence of one glass transition temperature and a weak melting region. DMA analysis reveals a low temperature secondary relaxation and the glass to rubber transition followed by a rubbery plateau. All samples demonstrated the ability …


Electrospinning Of Polymeric Solutions Using Opuntia Ficus-Indica Mucilage And Iron Oxide For Nanofiber Membranes For Treating Arsenic Contaminated Water, Venkatesh Eppili Jun 2016

Electrospinning Of Polymeric Solutions Using Opuntia Ficus-Indica Mucilage And Iron Oxide For Nanofiber Membranes For Treating Arsenic Contaminated Water, Venkatesh Eppili

USF Tampa Graduate Theses and Dissertations

Water is the essential part of every organism and it is also a vital constituent of healthy living and diet. Unfortunately water contamination over the past decade has increased dramatically leading to various diseases. As technology advances, we are detecting many pollutants at smaller levels of concentrations. Arsenic (As) is one of those major pollutants, and Arsenic poisoning is a condition caused due to excess levels of arsenic in the body. The main basis for Arsenic poisoning is from ground water which naturally contains high concentrations of arsenic. A case study from 2007 states that over 137 million people in …


Modified Yttrium Hydroxide/Mc Nylon Nanocomposites And Scaling Effects In Multilayer Polyethylene Films, Jia Chen Mar 2016

Modified Yttrium Hydroxide/Mc Nylon Nanocomposites And Scaling Effects In Multilayer Polyethylene Films, Jia Chen

USF Tampa Graduate Theses and Dissertations

In this thesis, monomer casting (MC) nylon was synthesized. MC nylon could replace nonferrous metals in certain applications, including gears, wheels, and other moving parts. However, compared with metals, MC nylon products have poor strength and stiffness, and crack easily, especially at low temperatures. In addition, the dimensional stability of MC nylon is poor, especially in the large casting nylon products, causing significant internal stresses due to shrinkage. Thus, MC nylon cracks easily when cast and molded. The yttrium hydroxide particles were modified by stearic acid and dispersed in the caprolactam. The polymerization time was short due to fast anionic …


Thermal Fluctuations Tunneling In Doped Conjugated Polymers, Troy C. Stedman Feb 2015

Thermal Fluctuations Tunneling In Doped Conjugated Polymers, Troy C. Stedman

USF Tampa Graduate Theses and Dissertations

The possibility of using conducting polymers as organic alternatives to widely used inorganic materials for thermoelectric (TE) applications has received much attention in the past few decades. Since conducting polymers are generally inefficient compared to inorganic TE materials, research into their underlying transport mechanisms is required to improve their efficiency. We use a model based on the effects of local thermal fluctuations to characterize the transport in conducting polymer composites. With this model, full linear responses for the current and electronic heat current are obtained. From these responses, the local temperature dependent conductivity, electronic contribution to the thermal conductivity, and …


Design, Synthesis And Applications Of Polymer Biomaterials, Frankie Costanza Feb 2015

Design, Synthesis And Applications Of Polymer Biomaterials, Frankie Costanza

USF Tampa Graduate Theses and Dissertations

The emergence of antibiotic resistant bacteria has prompted the research into novel kinds of antibacterial small molecules and polymers. Nature has solved this issue with the use of cationic antimicrobial peptides, which act as nonspecific antibiotics against invading species. Herein, we have tried to mimic this general mechanism in a biocompatible and biodegradable polymer micelle based on the polymerization of naturally occurring amino acids lysine and phenylalanine linked to a PEG tether. This amphiphilic structure allows for the spontaneous collapse into stable nanoparticles in solution, which contains a hydrophilic outer layer and a hydrophobic core. Our polymers have shown activity …


Fabrication Of Tissue Precursors Induced By Shape-Changing Hydrogels, Olukemi O. Akintewe Jan 2015

Fabrication Of Tissue Precursors Induced By Shape-Changing Hydrogels, Olukemi O. Akintewe

USF Tampa Graduate Theses and Dissertations

Scaffold based tissue reconstruction inherently limits regenerative capacity due to inflammatory response and limited cell migration. In contrast, scaffold-free methods promise formation of functional tissues with both reduced adverse host reactions and enhanced integration. Cell-sheet engineering is a well-known bottom-up tissue engineering approach that allows the release of intact cell sheet from a temperature responsive polymer such as poly-N-isopropylacrylamide (pNIPAAm). pNIPAAm is an ideal template for culturing cell sheets because it undergoes a sharp volume-phase transition owing to the hydrophilic and hydrophobic interaction around its lower critical solution temperature (LCST) of 32°C, a temperature close to physiological temperature. Compared to …


Characterizing Interactions Between Chromophores In Synthetic And Natural Macromolecular Films Via Maldi-Tof, Ibf And Dielectric Analyzer, Parul Jain Jan 2013

Characterizing Interactions Between Chromophores In Synthetic And Natural Macromolecular Films Via Maldi-Tof, Ibf And Dielectric Analyzer, Parul Jain

USF Tampa Graduate Theses and Dissertations

With the emergence of Matrix Assisted Laser Desorption/Ionization-Time-of-flight as a tool for diagnosis of diseases via proteomics, there is an increasing need for greater sensitivity. Analysis of peptides by MALDI-TOF-MS is affected by sample formulation and spotting onto a MALDI target. This dissertation investigates a novel MALDI sample preparation technique, Induction Based Fluidics (IBF), for depositing precise volumes (pL to nL) of samples onto the target. We have seen that while using IBF, the induced electric field accompanying deposition enhances matrix crystallization yielding smaller crystals with more homogeneity, as compared to conventional manual micropipette (MP) depositions. An investigation of the …


Design, Synthesis, Processing, And Thermal Analysis Of Nanocomposites With Tunable Properties, Mu Seong Kim Jul 2012

Design, Synthesis, Processing, And Thermal Analysis Of Nanocomposites With Tunable Properties, Mu Seong Kim

USF Tampa Graduate Theses and Dissertations

Polymer composites containing nanosized fillers have generated explosive interest since the early 1980's. Many recent studies have been conducted incorporating nano-fillers into polymer matrices to design and synthesize materials with tunable mechanical, thermal, and optical properties. Conventional filled polymers, where the reinforcement is on the order of microns, have been replaced by composites with discrete nanosized fillers. Gradually, theories that predicted that composite properties are independent of particle size in the micron range were challenged by nanocomposites. Rather, nanocomposite properties are greatly influenced by the surface area of the. All of this is complicated by the fact that nanoparticles are …


Hydrophilic Polymers Of Poly (2-Hydroxy Ethyl Methacrylate) With Tunable Properties For Drug Release, Sequestration Of Blistering Agent, Preparation Of Ultra-Strong Hydrogels & Thermal Stability Of Various Organic Azides, Ramakanth Ananthoji Apr 2012

Hydrophilic Polymers Of Poly (2-Hydroxy Ethyl Methacrylate) With Tunable Properties For Drug Release, Sequestration Of Blistering Agent, Preparation Of Ultra-Strong Hydrogels & Thermal Stability Of Various Organic Azides, Ramakanth Ananthoji

USF Tampa Graduate Theses and Dissertations

The design and synthesis of new finely tunable porous materials has spurred interest in developing novel uses in a variety of systems. Zeolites, inorganic materials with high thermal and mechanical stability, in particular, have been widely examined for use in applications such as catalysis, ion exchange and separation. A relatively new class of inorganic-organic hybrid materials known as metal-organic frameworks (MOFs) has recently surfaced, and many have exhibited their efficiency in potential applications such as ion exchange and drug delivery. A more recent development is the design and synthesis of a subclass of MOFs based on zeolite topologies (i.e. ZMOFs), …


Synthesis And Characterization Of Self-Healing Poly (Carbonate Urethane) Carbon-Nanotube Composites, Roger Wesley Bass Jan 2011

Synthesis And Characterization Of Self-Healing Poly (Carbonate Urethane) Carbon-Nanotube Composites, Roger Wesley Bass

USF Tampa Graduate Theses and Dissertations

Synthesis of high molar mass polycarbonate polyurethanes using a novel polyol is described. The resulting elastomers demonstrate excellent mechanical properties as well as the capability to re-heal after rupture without the addition of additives or imbedded healing agents. The self-healing functionality is shown to greatly improve with the addition of up to 1% single and multi-walled carbon nanotubes. The interface of the carbon nanotubes and self-healing polymer are probed using Raman techniques and provide an insight into how the self-healing actions are improved with the addition of carbon nanotubes.

Synthesis of polycarbonate polyurethanes and carbon nanotube composites using a novel …