Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Materials Science and Engineering

Missouri University of Science and Technology

Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 84

Full-Text Articles in Chemistry

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine Feb 2024

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

This study focused on the development of high-resolution polymeric structures using polymer-induced self-assembly (PISA) printing with commercially available digital light-processing (DLP) printers. Significantly, soluble solids could be 3D-printed using this methodology with controllable aqueous dissolution rates. This was achieved using a highly branched macrochain transfer agent (macro-CTA) containing multiple covalently attached CTA groups. In this work, the use of acrylamide as the self-assembling monomer in isopropyl alcohol was explored with the addition of N-(butoxymethyl)acrylamide to modulate the aqueous dissolution kinetics. PISA-printed microneedles were observed to have feature sizes as small as 27 μm, which was close to the resolution limit …


Synthesis, Densification, And Cation Inversion In High Entropy (Co,Cu,Mg,Ni,Zn)Al2o4 Spinel, Cole A. Corlett, Nina Obradovic, Jeremy Lee Watts, Eric W. Bohannan, William Fahrenholtz Jan 2023

Synthesis, Densification, And Cation Inversion In High Entropy (Co,Cu,Mg,Ni,Zn)Al2o4 Spinel, Cole A. Corlett, Nina Obradovic, Jeremy Lee Watts, Eric W. Bohannan, William Fahrenholtz

Materials Science and Engineering Faculty Research & Creative Works

The synthesis, densification behavior, and crystallographic site occupancy were investigated for four different spinel-based ceramics, including a high-entropy spinel (Co0.2Cu0.2Mg0.2Ni0.2 Zn0.2)Al2O4. Each composition was reacted to form a single phase, but analysis of X-ray diffraction patterns revealed differences in cation site occupancy with the high-entropy spinel being nearly fully normal. Densification behavior was investigated and showed that fully dense ceramics could be produced by hot pressing at temperatures as low as 1375°C for all compositions. Vickers' hardness values were at least 10 GPa for all compositions. The …


Relating Detonation Parameters To The Detonation Synthesis Of Silicon Carbide, Martin Langenderfer, Eric W. Bohannan, Jeremy Lee Watts, William Fahrenholtz, Catherine E. Johnson May 2022

Relating Detonation Parameters To The Detonation Synthesis Of Silicon Carbide, Martin Langenderfer, Eric W. Bohannan, Jeremy Lee Watts, William Fahrenholtz, Catherine E. Johnson

Chemistry Faculty Research & Creative Works

Detonation synthesis of silicon carbide (SiC) nanoparticles from carbon liberated by negatively oxygen balanced explosives was evaluated in a 23 factorial design to determine the effects of three categorical experimental factors: (1) cyclotrimethylene-trinitramine (RDX)/2,4,6-trinitrotoluene (TNT) ratio, (2) silicon (Si) additive concentration, and (3) Si particle size. These factors were evaluated at low and high levels as they relate to the detonation performance of the explosive and the solid Si-containing phases produced. Detonation velocity and Chapman-Jouguet (C-J) detonation pressure, which were measured using rate stick plate dent tests, were evaluated. Solid detonation product mass, silicon carbide product concentration, and residual silicon …


Theranostic Copolymers Neutralize Reactive Oxygen Species And Lipid Peroxidation Products For The Combined Treatment Of Traumatic Brain Injury, Aaron Priester, Richard Waters, Ashleigh Abbott, Krista Hilmas, Klaus Woelk, Hunter A. Miller, Aria W. Tarudji, Connor C. Gee, Brandon Mcdonald, Forrest M. Kievit, Anthony J. Convertine Apr 2022

Theranostic Copolymers Neutralize Reactive Oxygen Species And Lipid Peroxidation Products For The Combined Treatment Of Traumatic Brain Injury, Aaron Priester, Richard Waters, Ashleigh Abbott, Krista Hilmas, Klaus Woelk, Hunter A. Miller, Aria W. Tarudji, Connor C. Gee, Brandon Mcdonald, Forrest M. Kievit, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

Traumatic brain injury (TBI) results in the generation of reactive oxygen species (ROS) and lipid peroxidation product (LPOx), including acrolein and 4-hydroxynonenal (4HNE). The presence of these biochemical derangements results in neurodegeneration during the secondary phase of the injury. The ability to rapidly neutralize multiple species could significantly improve outcomes for TBI patients. However, the difficulty in creating therapies that target multiple biochemical derangements simultaneously has greatly limited therapeutic efficacy. Therefore, our goal was to design a material that could rapidly bind and neutralize both ROS and LPOx following TBI. To do this, a series of thiol-functionalized biocompatible copolymers based …


Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer Jan 2021

Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer

Doctoral Dissertations

“This research investigates the physical and chemical processes that contribute to the detonation synthesis of silicon carbide nanoparticles. Bulk production of SiC nanoparticles through detonation is possible due to pressures achieved over 20 GPa and temperatures over 2000 K as well as quenching rates in excess of 13 billion K/second. These conditions catalyze reaction and bottom-up molecular growth while retaining particles < 100 nm in diameter. In this work, detonation synthesis of SiC was demonstrated by incorporation of polycarbosilane, an SiC precursor material, into an RDX/TNT explosive matrix prior to detonation. Detonation Synthesis of SiC was also accomplished by reacting elemental silicon with carbon liberated by the detonation of negatively oxygen balanced TNT. Hydrodynamic simulation of a 60:40 mass ratio RDX/TNT detonation created conditions thermodynamically suitable to produce cubic silicon carbide within the first 500 nanoseconds after the passage of the detonation wave while carbon remains chemically reactive for molecular formation. Simulations and experimental tests indicated that loading configuration and impedance mismatch of the precursor additives used in detonation synthesis results in conditions in the additives that exceed the accepted detonation pressure of the explosive by greater than three times. Finally, a full factorial experimental design showed increasing silicon concentration, reducing silicon size, and reducing oxygen balance by adjusting the ratio of RDX to TNT decreased the explosives detonation pressure by 20% and increased the soot yield and concentration of SiC observed in the detonation products by 82% and 442% respectively”--Abstract, page iv.


Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi Jan 2020

Transition Metal Chalcogenide Hybrid Systems As Catalysts For Energy Conversion And Biosensing, Siddesh Umapathi

Doctoral Dissertations

"Generation of hydrogen and oxygen through catalyst-aided water splitting which has immense applications in metal air batteries, PEM fuel cells and solar to fuel energy production, has been one of the critical topics in recent times. The state of art oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER) catalysts are mostly comprised of precious metals. The current challenge lies in replacing these precious metal-based catalysts with non-precious earth-abundant materials without compromising catalytic efficiency.

This research explores mixed metal selenides containing Fe-Ni, Fe-Co and RhSe which were hydrothermally synthesized and/or electrodeposited and tested for OER and ORR …


Development Of Functional Ionic Liquids For Separation And Recovery Of Rare Earth Elements, Mostafa Khodakarami Jan 2019

Development Of Functional Ionic Liquids For Separation And Recovery Of Rare Earth Elements, Mostafa Khodakarami

Doctoral Dissertations

“This research focused on the design and synthesis of task-specific ionic liquids for enhanced extraction and separation of rare earth elements (REEs). Two novel ammonium-based functional ionic liquids (FILs) with oxygen donating groups: trioctyl(2-ethoxy-2-oxoethyl)ammonium dihexyl diglycolamate, [OcGBOEt][DHDGA], and tricaprylmethylammonium dihexyl diglycolamate, [A336][DHDGA] were synthesized and tested for the recovery and separation of selected REEs from aqueous solutions. Functionalities with different denticities were incorporated into both anionic and cationic parts of ionic liquids, which are solely composed of incinerable atoms including C, H, O, and N. The structural, physical, and chemical properties of the synthesized FILs were studied using nuclear magnetic …


Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee Jan 2019

Polyurea Aerogels: From Nanoscopic To Macroscopic Properties, Tahereh Taghvaee

Doctoral Dissertations

"The morphology of a material is intrinsically a qualitative property and in order to relate nanomorphology to synthetic conditions, it is necessary to express nano/micro-structure quantitatively. In this context, polyurea aerogels were chosen as a model system with demonstrated potential for rich nanomorphology and being guided by a statistical Design-of-Experiments model, a large array of materials (208) with identical chemical composition, but quite different nanostructures were prepared. By reflecting upon the SEM images, it was realized that our first pre-verbal impression about a nanostructure is related to its openness and texture; the former is quantified by porosity (Π), and the …


Removal Of Antimony And Bismuth From Copper Electrorefining Electrolyte By Two Proprietary Solvent Extraction Extractants, Andrew Artzer Jan 2019

Removal Of Antimony And Bismuth From Copper Electrorefining Electrolyte By Two Proprietary Solvent Extraction Extractants, Andrew Artzer

Masters Theses

"Antimony and bismuth are two of the most problematic impurities in copper electrorefining (ER). Because of this, much research has been done investigating the ways to remove them. Processes that are currently being used industrially include anode additions, liberators, ion exchange (IX), and solvent extraction (SX). Of these, liberators and anode additions are the most common while SX is the least, mostly being used for arsenic removal. There are other methods that have been evaluated, but are not in commercial use. These include the use of various electrolyte additives, and adsorbents such as bentonite clay and heavy metal sulfates.

Two …


Synthesis And Applications Of Ceramic (Silicon Carbide And Silicon Nitride), Metallic (Cobalt(0)) And Polymeric (Polyurethane) Aerogels, Parwani M. Rewatkar Jan 2019

Synthesis And Applications Of Ceramic (Silicon Carbide And Silicon Nitride), Metallic (Cobalt(0)) And Polymeric (Polyurethane) Aerogels, Parwani M. Rewatkar

Doctoral Dissertations

"A new method has been demonstrated for the synthesis of monolithic ceramic and purely metallic aerogels from xerogel powder compacts, and the use of polyurethane aerogels based on cyclodextrins as efficient desiccants.

I. Highly porous ( > 80%) monolithic SiC and Si3N4, aerogels were prepared from compressed compacts of polyurea-crosslinked silica xerogel powders. The process is time efficient as solvent-exchange through powders is fast, and energy efficient as it bypasses drying with supercritical fluids. The final ceramic objects were chemically pure, sturdy, with compressive moduli at 37 ±7 MPa and 59 ± 7 MPa, and thermal conductivities …


Electrodeposition Of Epitaxial Metal Thin Films On Silicon For Energy Conversion And Flexible Electronics, Qingzhi Chen Jan 2019

Electrodeposition Of Epitaxial Metal Thin Films On Silicon For Energy Conversion And Flexible Electronics, Qingzhi Chen

Doctoral Dissertations

"This research focuses on epitaxial electrodeposition of two coinage metals: Au and Ag thin films on the silicon surface and their applications in flexible electronics and energy conversion and storage. The first paper: Photoelectrochemistry of ultrathin, semi-transparent, and catalytic gold films electrodeposited epitaxially onto n-silicon (111) describes the epitaxial electrodeposition of Au thin films on n-type Si using a simple HAuCl4 bath and the photoelectrochemical properties of the Au-Si junction barrier. The effect of the Au layer on the interfacial energetics as well as the stability of the photoelectrode as a function of the Au coverage/thickness is determined in a …


Nanomorphology Dependent Optical And Mechanical Properties Of Aerogels, Chandana Mandal Jan 2019

Nanomorphology Dependent Optical And Mechanical Properties Of Aerogels, Chandana Mandal

Doctoral Dissertations

"Aerogels are very low density, light weight open pore materials. A hypothesis that is under intense current investigation by the scientific community states that the mechanical properties of nanostructured polymers depend on their nanomorphology. Aerogels are nanostructured ultra-lightweight nanoporous materials with skeletal frameworks that can display a wide range of nanomorphologies. Thereby aerogels comprise a suitable platform for testing not only that hypothesis but also a wide range of other properties such as light scattering for applications, for example, in thermally insulating windows.

To study the mechanical properties of nanostructured matter as a function of nanomorphology, various shape-memory polyurethane aerogels …


Three-Dimensional Nanotube Arrays For Solar Energy Harvesting And Production Of Solar Fuels, Wipula P. R. Liyanage Jan 2019

Three-Dimensional Nanotube Arrays For Solar Energy Harvesting And Production Of Solar Fuels, Wipula P. R. Liyanage

Doctoral Dissertations

"Over the past decade extensive research has been carried out on photovoltaic semiconductors to provide a solution towards a renewable energy future. Fabricating high-efficiency photovoltaic devices largely rely on nanostructuring the photoabsorber layers due to the ability of improving photoabsorption, photocurrent generation and transport in nanometer scale. Vertically aligned, highly uniform nanorods and nanowire arrays for solar energy conversion have been explored as potential candidates for solar energy conversion and solar-fuel generation owing to their enhanced photoconversion efficiencies.

However, controlled fabrication of nanorod and especially nanotube arrays with uniform size and shape and a pre-determined distribution density is still a …


Detonation Synthesis Of Alpha-Variant Silicon Carbide, Martin Langenderfer, Catherine E. Johnson, William Fahrenholtz, Vadym Mochalin Jul 2018

Detonation Synthesis Of Alpha-Variant Silicon Carbide, Martin Langenderfer, Catherine E. Johnson, William Fahrenholtz, Vadym Mochalin

Mining Engineering Faculty Research & Creative Works

A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


Research And Development Of Optically Transparent Join With Low Processing Temperatures, Eric Kevin Muskovin Jan 2018

Research And Development Of Optically Transparent Join With Low Processing Temperatures, Eric Kevin Muskovin

Masters Theses

The purpose of this study was to investigate durable solar cell cover glass joins produced by diffusion bonding with deep eutectic solvents (DES) and to develop a novel process of joining optically transparent materials at low temperatures. A joined PV cell-glass specimen was characterized using Raman, μ-FTIR, SEM-EDS, and thin-film XRD. DESs were created with malonic acid (MAL) and choline chloride (ChCl) of varying composition factors (CF; CF=MAL/ChCl). Joining borosilicate glass coupons was attempted using DESs with CF = 0.65 and 1 at temperatures between 100-150 °C for 20 hours. Joining the glass coupons failed at all temperatures and oxygen …


Electrodeposited Epitaxial Cobalt Oxides And Copper Metal, Caleb M. Hull Jan 2018

Electrodeposited Epitaxial Cobalt Oxides And Copper Metal, Caleb M. Hull

Doctoral Dissertations

"Electrochemical deposition methods are presented for the deposition of Co(OH)2 and Cu metal. Paper I shows the deposition of β-Co(OH)2 on Ti through electrochemical reduction of [Co(en)3]3+ to [Co(en)3]2+ in 2M NaOH. The catalytic properties of the deposited Co(OH)2 towards water oxidation is found comparable to Co3O4, with the surface of the Co(OH)2 converting to CoOOH during the reaction. Paper II gives the conditions suitable for epitaxial growth of Co(OH)2 on Au(100), Au(110), and Au(111) following the same reduction mechanism as described in Paper I. …


Synthesis And Functionalization Of A Triaryldiamine-Base Photoconductive/Photorefractive Composite, And Its Application To Aberrated Image Restoration, Yichen Liang Jan 2016

Synthesis And Functionalization Of A Triaryldiamine-Base Photoconductive/Photorefractive Composite, And Its Application To Aberrated Image Restoration, Yichen Liang

Doctoral Dissertations

"Organic photorefractive (PR) composites have recently emerged as an important class of materials for applications including high-density data storage, optical communication, and biomedical imaging. In an effort to further improve their performance, this study focused on the utilization of functionalized semiconductor nanocrystals to photosensitize triaryamine (TPD)-based PR composites, as well as the application of TPD-based PR composites in the restoration of aberrated optical information. A novel approach to functionalize CdSe quantum dot (QCdSe) was firstly introduced where the sulfonated triarydiamine (STPD) was used as charge-transporting ligand to passivate QCdSe. TPD-based photoconductive and PR composites were photosensitized with the STPD-passivated QCdSe …


Glass Transition Behavior Of Poly(Methyl Acrylate) End-Grafted By Atrp To Amorphous Silica, Manikantan B. Nair, Frank D. Blum Jan 2008

Glass Transition Behavior Of Poly(Methyl Acrylate) End-Grafted By Atrp To Amorphous Silica, Manikantan B. Nair, Frank D. Blum

Chemistry Faculty Research & Creative Works

Ultra-thin polymer films attached to solid substrates (supported films) have attracted significant interest in recent years. Supported films are used in the design of advanced materials like photoresists, lubricants and other electronic devices. Glass transition temperatures (Tgs) of supported polymer films have also been of significant interest. The Tg has been shown to depend on the thickness of the polymer film on the surface and the inherent nature of the surface. The effect of end-grafting of a polymer chain to a surface, on the Tg of the polymer has been studied previously.1 Reports on the study of glass transition behaviors …


Thermal Analysis Of Adsorbed Poly(Vinyl Acetate) On Silica, Boonta Hetayothin, Frank D. Blum Jan 2008

Thermal Analysis Of Adsorbed Poly(Vinyl Acetate) On Silica, Boonta Hetayothin, Frank D. Blum

Chemistry Faculty Research & Creative Works

The physical properties of polymers at interfaces can be quite different from those in bulk due to the interaction between the absorbed polymer and the surface. This phenomenon can be probed through the dynamic behavior of the polymer chains at the interface which can be experimentally probed by techniques such as nuclear magnetic resonance spectroscopy (NMR),1 viscoelasticity, and calorimetry. At the polymer-air interface, polymer chains have more flexibility than those at the polymer-substrate interface. On the other hand, at the silica-polymer interface, where chains are more restricted on the surface, a higher glass transition temperature (Tg) results as compared with …


Dynamics Of Adsorbed Pma-D₃ - Effect Of Substrate, Frank D. Blum, Burak Metin, Macduff O. Okuom Jan 2008

Dynamics Of Adsorbed Pma-D₃ - Effect Of Substrate, Frank D. Blum, Burak Metin, Macduff O. Okuom

Chemistry Faculty Research & Creative Works

In the last few years, our group has focused much of our attention on studying the dynamics of polymers adsorbed at interfaces. Much of our work, to date has been on labeled poly(vinyl acetate)-d3 (PVAc-d3)1 and poly(methyl acrylate)-d3 (PMA-d3)2 on silica. We have been able to probe the effects of adsorbed amount,3 molecular mass,4,5 and the effect of overlayer.6 These studies have provided a view of the adsorbed polymer consistent with a motional gradient in the layer with the more mobile segments being those at the air-polymer interface and the less-mobile segments at the substratepolymer interface. However, we have not …


Dynamics Of Pipa-D₇ On Silica Surface, Piyawan Krisanangkura, Frank D. Blum Jan 2008

Dynamics Of Pipa-D₇ On Silica Surface, Piyawan Krisanangkura, Frank D. Blum

Chemistry Faculty Research & Creative Works

Molecular motion of polymer chains is an important determinant in understanding the physical properties of polymeric materials. Glass transition temperature (Tg) is a physical property of polymers, which is of primary interest. The study of the dynamics of polymer segments assists in understanding the dependence of Tg on polymer structure.1 For decades, studies have addressed the molecular motion in various polymers. Some of them have probed the dynamics of polymer backbones.2,3 the properties of a polymer at an interface may change because of the type of polymer, the substrate, or other variables. The side chain of a polymer can also …


Additive-Assisted, Cerium-Based, Corrosion-Resistant E-Coating, James O. Stoffer, Thomas J. O'Keefe, Eric L. Morris, Xuan Lin, Scott A. Hayes, Pu Yu Jul 2007

Additive-Assisted, Cerium-Based, Corrosion-Resistant E-Coating, James O. Stoffer, Thomas J. O'Keefe, Eric L. Morris, Xuan Lin, Scott A. Hayes, Pu Yu

Chemistry Faculty Research & Creative Works

Corrosion resistance of metallic components such as stainless steel components of vehicles, and especially aluminum- based components of aircraft, is enhanced by application of an e-coat paint or primer which is enhanced by incorporation of cerium ions into the e-coat electrolytic bath. The resulting overall coating includes a cerium-based layer under a cerium-enhanced e-coat paint or primer layer.


Irradiation And Metal-Containing Conjugated-Polymer Nanocomposites, Frank D. Blum, Zhe-Fei Li, Sunil K. Pillalamarri, Massimo F. Bertino Jan 2007

Irradiation And Metal-Containing Conjugated-Polymer Nanocomposites, Frank D. Blum, Zhe-Fei Li, Sunil K. Pillalamarri, Massimo F. Bertino

Chemistry Faculty Research & Creative Works

In recent years, there has been considerable interest in inorganic/organic hybrid materials that combine the desirable properties of both classes. These composite materials may find significant application in a variety of applications such as sensors, memory and energy conversion, to name just a few. In our laboratories, we have recently made a series of studies on the production of polymer nanofibers and their composites with nanometals. Much of this work has focused on the production of polyaniline (PANI) nanofibers that have been made from one-pot syntheses in aqueous solutions where the polymerization was influenced by -radiation1 or UV-radiation.2 in the …


Cerium-Based Spontaneous Coating Process For Corrosion Protection Of Aluminum Alloys, James O. Stoffer, Thomas J. O'Keefe, Matthew O'Keefe, Eric L. Morris, Scott A. Hayes, Paul Yu, Alex Williams, Berny F. Rivera Vasquez, Xuan Lin May 2006

Cerium-Based Spontaneous Coating Process For Corrosion Protection Of Aluminum Alloys, James O. Stoffer, Thomas J. O'Keefe, Matthew O'Keefe, Eric L. Morris, Scott A. Hayes, Paul Yu, Alex Williams, Berny F. Rivera Vasquez, Xuan Lin

Chemistry Faculty Research & Creative Works

A cerium-based coating for corrosion resistance is applied by exposing a cleaned aluminum-based component to a corrosion-inhibiting cerium solution containing cerium ions in the presence of an oxidizing agent. The coating deposits spontaneously without an external source of electrons.


2nd Annual Undergraduate Research Conference Abstract Book, University Of Missouri--Rolla Apr 2006

2nd Annual Undergraduate Research Conference Abstract Book, University Of Missouri--Rolla

Undergraduate Research Conference at Missouri S&T

No abstract provided.


Structural And Magnetic Properties Of La Mn₁₋ₓfeₓo₃ (0 < X < 1.0), X.-D. Zhou, L. R. Pederson, Qingsheng Cai, Jinbo Yang, B. J. Scarfino, M. Kim, William B. Yelon, William Joseph James, Harlan U. Anderson, C. Wang Apr 2006

Structural And Magnetic Properties Of La Mn₁₋ₓfeₓo₃ (0 < X < 1.0), X.-D. Zhou, L. R. Pederson, Qingsheng Cai, Jinbo Yang, B. J. Scarfino, M. Kim, William B. Yelon, William Joseph James, Harlan U. Anderson, C. Wang

Materials Science and Engineering Faculty Research & Creative Works

Electronic, structural, and magnetic properties of Mn-doped lanthanum ferrites were studied by neutron diffraction, superconducting quantum interference device, and impedance spectroscopy. Neutron diffraction refinements were performed with the constraint of full La occupancy, which showed the presence of excess oxygen when x < 0.4. Mixed valent Mn cations and cation vacancies, therefore, exist in all the samples. The samples with x > 0.7 are magnetically ordered at room temperature with orthorhombic symmetry (Pbnm). When x < 0.3 the structure is rhombohedral and magnetically disordered above 16 K. The majority carriers, electron holes, correspond to high oxidation states of Mn. The carrier concentration is determined from the Seebeck coefficients, and is a function of temperature and Fe concentration. The measurements of conductivity and Seebeck coefficients show polaron hopping at elevated temperatures.


Electrochemical Deposition And Characterization Of Fe₃O₄ Films Produced By The Reduction Of Fe(Iii)-Triethanolamine, Hiten M. Kothari, Elizabeth A. Kulp, Steven J. Limmer, Philippe Poizot, Eric W. Bohannan, Jay A. Switzer Jan 2006

Electrochemical Deposition And Characterization Of Fe₃O₄ Films Produced By The Reduction Of Fe(Iii)-Triethanolamine, Hiten M. Kothari, Elizabeth A. Kulp, Steven J. Limmer, Philippe Poizot, Eric W. Bohannan, Jay A. Switzer

Chemistry Faculty Research & Creative Works

In this paper, we demonstrate that films of magnetite, Fe3O4, can be deposited by the electrochemical reduction of a Fe(III)-triethanolamine complex in aqueous alkaline solution. the films were deposited with a columnar microstructure and a [100] preferred orientation on stainless steel substrates. In-plane electrical transport and magnetoresistance measurements were performed on the films after they were stripped off onto glass substrates. the resistance of the films was dependent on the oxygen partial pressure. We attribute the increase in resistance in O2 and the decrease in resistance in Ar to the oxidation and reduction of grain …


Molecular Mass And Dynamics Of Poly(Methyl Acrylate) In The Glass Transition Region, Burak Metin, Frank D. Blum Jan 2006

Molecular Mass And Dynamics Of Poly(Methyl Acrylate) In The Glass Transition Region, Burak Metin, Frank D. Blum

Chemistry Faculty Research & Creative Works

The segmental dynamics of bulk poly(methyl acrylate) (PMA) were studied as a function of molecular mass in the glass-transition region using 2H NMR and modulated differential scanning calorimetry (MDSC). Quadrupole-echo 2H NMR spectra were obtained for four samples of methyl-deuterated PMA-d3 with different molecular masses. The resulting spectra were fit using superpositions of simulated spectra generated from the MXQET simulation program, based on a model incorporating nearest-neighbor jumps from positions on the vertices of a truncated icosahedron (soccer-ball shape). The lower molecular-mass samples, influenced by the presence of more chain ends, showed more heterogeneity (broader distribution) and lower glass transitions …


Segmental Dynamics Of Poly(Isopropyl Acrylate)-D7 On Silica, Piyawan Krisanangkura, Frank D. Blum Jan 2006

Segmental Dynamics Of Poly(Isopropyl Acrylate)-D7 On Silica, Piyawan Krisanangkura, Frank D. Blum

Chemistry Faculty Research & Creative Works

For a polymer film deposited on a surface, the strength of the surfacesegment interaction affects the mobility of polymer-chain segments. The selfconsistent field lattice model of Scheutjens and Fleer,1 based on mean-field lattice models of polymer at interfaces,2 has been used to describe the distribution of conformations of polymers on surfaces. Adsorbed-polymer segments may be classified as belonging to loops, trains or tails. There are different techniques used to study the molecular motion of the polymer including modulated differential scanning calorimetry (MDSC)3 and nuclear magnetic resonance (NMR).4,5 in this work, solid-state deuterium (2H) NMR was used to characterize the polymer …