Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Analytical Chemistry

2024

Institution
Keyword
Publication
Publication Type

Articles 1 - 28 of 28

Full-Text Articles in Chemistry

The Reveal: A Technical Study And Conservation Treatment Of An Overpaint Portrait, Camille Ferrer Sep 2024

The Reveal: A Technical Study And Conservation Treatment Of An Overpaint Portrait, Camille Ferrer

Art Conservation Master's Projects

A severely damaged 19th-century oil painting depicting a portrait of a woman was treated at Patricia H. and E. Garman Art Conservation Department. A typed letter provided by the owner mentioned that it has been previously restored yet returned with unsatisfactory results. After further examination, the painting appeared to have been previously treated multiple times by different people. There was overpaint distinctly present on the face and later discovered to be present overall. The full state of condition of the painting was initially unknown due to the sum of the surface being overpainted. However, there were evidence of paint loss …


Tribocorrosion And Metal Release From Austenitic Stainless Steels 304 And 201 In Simulated Cassava Food Contact, Robert Addai, Temitope E. Olowoyo, Thalia E. Standish, Jeffrey Daniel Henderson, Ubong Eduok, Yolanda Hedberg Jul 2024

Tribocorrosion And Metal Release From Austenitic Stainless Steels 304 And 201 In Simulated Cassava Food Contact, Robert Addai, Temitope E. Olowoyo, Thalia E. Standish, Jeffrey Daniel Henderson, Ubong Eduok, Yolanda Hedberg

Chemistry Publications

Cassava is the third most significant calorie source in the tropics. Its processing has changed from traditional methods to stainless steel processing machines. This study investigated the influence of cassava on metal release from two common stainless steels, ASTM 304 and 201, with and without friction, and on tribocorrosion (multianalytically) of 304. Cassava was relatively corrosive and hindered repassivation of the surface oxide of stainless steel, but it also acted as a lubricant against mechanical friction. The combined action of friction and cassava caused a significant increase in iron, chromium, nickel, and manganese release from the stainless steels (30–35- fold …


Non-Destructive Determination Of Surface Area In Reverse Phase Chromatographic Columns, Margaret Figus May 2024

Non-Destructive Determination Of Surface Area In Reverse Phase Chromatographic Columns, Margaret Figus

Seton Hall University Dissertations and Theses (ETDs)

Excess adsorption isotherms of acetonitrile and methanol from water were measured on eight commercial columns. Columns used in this study represent the latest examples in column development and include three different poroshell columns (Kinotex C18, Ascentis C18, and Halo C18) as well as conventional columns with significantly different adsorbent geometries (Allure C18, YMC C18) and various hybrid-silica columns (Gemini C18, Xterra C18, and XBridge C18). Comparison of the excess adsorption isotherms measured on all these columns and expressed in surface-specific form demonstrated significant similarity of the adsorption properties of all columns, which allows the introduction of the Standard Excess Adsorption …


An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann May 2024

An Overview Of How To Measure The Kinetic Properties Of An Anode Material For The Chlorine Evolution Reaction, Cameron Vann

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The process of generating chlorine gas using electrolysis in aqueous systems is well established. However, a new process requires chlorine to be generated at high temperatures using molten salt. This harsh environment requires a new study of anode materials for the chlorine evolution reaction. Anode materials can be compared by their kinetic parameters, the transfer coefficient α and the exchange current i0. The basic theory of these properties as they relate to the chlorine evolution reaction has been detailed and an analysis method for finding these effective parameters has been shown and demonstrated.


Model Of The Effect Of Voltage On Contact Angle In An Electrolytic Cell Reaction, Aaron Essilfie May 2024

Model Of The Effect Of Voltage On Contact Angle In An Electrolytic Cell Reaction, Aaron Essilfie

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This paper investigates the hypothesis that the contact angle at the meniscus of an electrode-electrolyte can be altered during a redox reaction through the coupled understanding of electrowetting and capillarity rise. Recent studies in electrowetting have focused on dielectric surfaces but research on contact angle at the electrode-electrolyte surface is lacking. The study employs a basic electrolytic cell. By applying principles of electrowetting and capillary rise the research aims to understand the relationship between applied voltage and contact angle, to advancements in electrochemistry and microfluidics.


Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory May 2024

Review Of Cyclic Voltammetry Measurements For Uranium In Flinak Molten Salt, Jackson Ivory

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

The electrochemical behavior of uranium FLiNaK molten salts is explored, focusing on cyclic voltammetry (CV) as a powerful tool for redox characterization and diffusion studies. Through a comprehensive review of recent research, the study highlights the significance of CV in understanding electrode kinetics, material compatibility, and process optimization in molten salt environments. The findings underscore the potential of FLiNaK molten salt reactors in advancing nuclear energy technologies, fuel processing, and waste management strategies. Collaborative interdisciplinary efforts are emphasized to address challenges and accelerate innovation in electrochemical methods for nuclear applications.


Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah May 2024

Model To Demonstrate Effects Of Mass Transfer And Applied Current In An Electrolytic Cell, George Ankrah

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

This study investigates the relationship between applied current and resulting cell potential in an electrolytic system, considering the transport of electroactive species. By applying Michael Faraday's laws of electrolysis and the Nernst-Planck equation, the behavior of electroactive species in diffusion-controlled systems with and without stirring is modeled. The plots demonstrate how stirring enhances ion transport and establishes a stable Nernst diffusion layer, affecting the kinetics of electrochemical reactions. Understanding these dynamics is crucial for optimizing electrolysis processes.


Probing The Surface Structure Of Ferrocene Modified Electrodes Using Cyclic Voltammetry, Rebekah S. Stanely May 2024

Probing The Surface Structure Of Ferrocene Modified Electrodes Using Cyclic Voltammetry, Rebekah S. Stanely

Reviews, Analyses, and Instructional Studies in Electrochemistry (RAISE)

Modifying electrodes imparts new electrochemical properties for use in various applications. To fully understand these electrochemical properties the structure of the modified surface needs to be characterized. Cyclic voltammetry (CV) offers a quick and simple way to determine if the surface structure has been homogeneously modified even at low surface concentrations. Nonideal responses in CV scans give insights to the microenvironments and structure of the monolayer surface that may be indistinguishable in other techniques. Peak fitting CV data, coupled with other surface techniques, can further characterize the contributions and nature of these microenvironments and aid in structural determination.


Use Of Molecular Logic Gates For The Tuning Of Chemosensor Dynamic Range, Orhan Acikgoz May 2024

Use Of Molecular Logic Gates For The Tuning Of Chemosensor Dynamic Range, Orhan Acikgoz

Undergraduate Honors Theses

The first molecular logic gates were created in the 1990s; integrating such logic gates into fluorescent chemosensors allowed for the detection of different types of ions in solution. In this study, we have developed a new use of molecular logic gates by having two of the same type of binding site. The two binding sites on a fluorophore that both detect Na+ ions led to an increase in the detection limit compared with the chemosensor with a single binding site. Since the two sodium binding sites create an AND logic gate, two sodium ions are needed to generate a …


Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu Apr 2024

Electrochemical Advanced Treatment Of Desulfurization Wastewater From Coal-Fired Power Plants, Ju-Cai Wei, Juan Yi, Xu Wu

Journal of Electrochemistry

Zero-emission of desulfurization wastewater is one of the main demands for coal-fired power plants. As typical high salinity wastewater, it is hard to purify the desulfurization wastewater from coal-fired power plants through traditional physicochemical treatment or biochemical treatment, e.g., COD and Cl. A high concentration of Cl ion in desulfurization wastewater restricts wastewater reuse and zero-emission. Electrochemical technology is an attractive method for high salinity wastewater zero-emission, which provides a versatile, efficient, cost-effective, easily automatable, and clean industrial process. For advanced treatment of effluent after triple box process treatment in power plants, this paper reports an electrochemical …


X-Ray Fluorescence Analysis Of Historic Art Paint Pigments, Sofia A. Stirpe, Juergen Thieme Apr 2024

X-Ray Fluorescence Analysis Of Historic Art Paint Pigments, Sofia A. Stirpe, Juergen Thieme

Binghamton University Undergraduate Journal

Utilizing synchrotron radiation, X-ray fluorescence (XRF) microscopy enables researchers to deduce the elemental composition of paint pigments with a higher sensitivity and resolution than that of lab-based XRF instruments. With this information, art historians can date paintings by examining the elemental makeup of paint pigments and the time periods in which they were used. One painting, Christ and the Woman Taken in Adultery, has been duplicated by Pieter Brueghel the Younger and other artists, leading to confusion over which artworks are Brueghel masterpieces or copies by other artists. Art historian Maurizio Seracini, retaining a painting that could be assigned …


Black Tio2 Nts And Zno-Tio2 Nts Heterostructure: Synthesis, Characterization, And Synchrotron-Based Spectroscopy Studies, Lu Yao Apr 2024

Black Tio2 Nts And Zno-Tio2 Nts Heterostructure: Synthesis, Characterization, And Synchrotron-Based Spectroscopy Studies, Lu Yao

Electronic Thesis and Dissertation Repository

The one-dimensional (1D) TiO2 nanotubes (NTs), and their derivatives have been extensively studied due to their potential use in water-splitting, solar cells, and lithium-ion batteries. Since TiO2 has a large band gap (~3.2 eV for anatase), there has been a search for higher photocatalytic efficiency by shifting the band gap into the visible range. This thesis presents a study of black TiO2 NTs and ZnO-TiO2 heterostructures using synchrotron-based X-ray spectroscopy and X-ray diffraction techniques. It involves the transformation from as-prepared TiO2 NTs to black TiO2 NTs via an electrochemical reduction method. ZnO-TiO2 NT …


Advancements In Characterization Of Ancient Potteries From Southeast Asia: A Review Of Analytical Techniques, Chitnarong Sirisathitkul Mar 2024

Advancements In Characterization Of Ancient Potteries From Southeast Asia: A Review Of Analytical Techniques, Chitnarong Sirisathitkul

Makara Journal of Science

Ancient potteries offer valuable information regarding technological advancements, life dynamics, cultural diversity, and trade routes in the past. Earthenware, stoneware, and porcelain from Southeast Asia have been characterized using several analytical techniques, as reviewed in this article. Fluorescent and diffracted X-rays give rise to elemental and phase compositions, respectively. Examination of molecular bonds requires vibrational spectroscopy, which is useful for the identification of organic materials in ancient potteries. With the advent of portable X-ray fluorescence and Raman spectrometry, on-site analysis of archeological ceramics is now possible. For in-depth analysis, synchrotron light sources can provide new insights into artifacts through X-ray …


The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao Mar 2024

The Determination Of Pzc And Differential Capacitance Curve Of Platinum-Alkaline Polymer Electrolyte Interfaces, Chen-Xi Liu, Ze-Ping Zou, Mei-Xue Hu, Yu Ding, Yu Gu, Shuai Liu, Wen-Jing Nan, Yi-Chang Ma, Zhao-Bin Chen, Dong-Ping Zhan, Qiu-Gen Zhang, Lin Zhuang, Jia-Wei Yan, Bing-Wei Mao

Journal of Electrochemistry

Alkaline polymer electrolyte (APE) is the core component of modern alkaline hydrogen and oxygen fuel cells, and its single ion conductor nature makes the "electrode/APE" interfaces different from the conventional "electrode/solution" interfaces in terms of ion distribution, electrical double layer structure and polarization behavior. Due to the complexity of the APE and the associated solid-solid interfaces, fundamental investigations are challenging and deeper understanding of the structures and properties of such interfaces is in the infant stage. In this work, we aim to investigate the double layer structure from the aspects of differential capacitance curve and potential of zero charge (PZC) …


Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan Mar 2024

Micropatterning And Functionalization Of Single Layer Graphene: Tuning Its Electron Transport Properties, Miao-Miao Cui, Lian-Huan Han, Lan-Ping Zeng, Jia-Yao Guo, Wei-Ying Song, Chuan Liu, Yuan-Fei Wu, Shi-Yi Luo, Yun-Hua Liu, Dong-Ping Zhan

Journal of Electrochemistry

As a promising 2D material, graphene exhibits excellent physical properties including single-atom-scale thickness and remarkably high charge carrier mobility. However, its semi-metallic nature with a zero bandgap poses challenges for its application in high-performance field-effect transistors (FETs). In order to overcome these limitations, various approaches have been explored to modulate graphene's bandgap, including nanoscale confinement, external field induction, doping, and chemical micropatterning. Nevertheless, the stability and controllability still need to be improved. In this study, we propose a feasible method that combines electrochemical bromination and photolithography to precisely tune the electron transport properties of single layer graphene (SLG). Through this …


High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre Mar 2024

High Resolution Mass Spectrometry As A Platform For The Analysis Of Polyoxometalates, Their Solution Phase Dynamics, And Their Biological Interactions., Daniel T. Favre

Doctoral Dissertations

Polyoxometalates (POMs) are a class of inorganic molecule of increasing interest to the inorganic, bioinorganic and catalytic communities among many others. While their prevalence in research has increased, tools and methodologies for the analysis of their fundamental characteristics still need further development. Decavanadate (V10) specifically has been postulated to have several unique properties that have not been confirmed independently. Mass spectrometry (MS) and its ability to determine the composition of solution phase species by both mass and charge is uniquely well suited to the analysis of POMs. In this work we utilized high-resolution mass spectrometry to characterize V10 in aqueous …


Synergistic Effect Of Acylpyrazolone Integrated With Multiwalled Carbon Nanotubes On The Electrochemical Analysis Of Ascorbic Acid, Emi Norzehan Mohamad Mahbob, Mohamad Syahrizal Ahmad, Illyas Md Isa, Norhayati Hashim, Anwar Ul-Hamid, Mohamad Idris Saidin, Suyanta Suyanta, Sofian Ibrahim Mar 2024

Synergistic Effect Of Acylpyrazolone Integrated With Multiwalled Carbon Nanotubes On The Electrochemical Analysis Of Ascorbic Acid, Emi Norzehan Mohamad Mahbob, Mohamad Syahrizal Ahmad, Illyas Md Isa, Norhayati Hashim, Anwar Ul-Hamid, Mohamad Idris Saidin, Suyanta Suyanta, Sofian Ibrahim

Makara Journal of Science

Square wave voltammetry, cyclic voltammetry, chronocoulometry, and electrochemical impedance spectroscopy were employed to assess ascorbic acid’s electrochemical behavior in multiwalled carbon nanotubes (MWCNTs)/carbon paste electrode (CPE) modified by 1-phenyl-3-methyl-4-metafluorobenzoyl-5-pyrazolone (HPMmFBP). The ascorbic acid’s irreversible oxidation peak appeared at approximately 0.5 V. The shifting of the peak potential at the pH range of 6.0–8.4 showed the involvement of protons in the ascorbic acid oxidation. Moreover, the shifting of the peak potential with scan rate in the range of 0.07–0.4 V/s confirmed that the oxidation reaction was irreversible. Under optimized conditions, the oxidative peak current showed linear dependence on the ascorbic acid’s …


New Ways To Improve Dispersibility Of Nanotubes: Approaching From The Formation Of Silicon Nanoparticles By High Energy Reactive Ball Milling (Herbm) In Polar Solvents, Julie P. Vanegas, Yolanda V. Gutierrez, Joaquin Rivera, Juan García Jr. Mar 2024

New Ways To Improve Dispersibility Of Nanotubes: Approaching From The Formation Of Silicon Nanoparticles By High Energy Reactive Ball Milling (Herbm) In Polar Solvents, Julie P. Vanegas, Yolanda V. Gutierrez, Joaquin Rivera, Juan García Jr.

Research Symposium

Background: This research aims to synthesize stable silicon nanoparticles using different molar ratios of N-Cyclohexyl-2-pyrrolidone (CHP) and Silicon to demonstrate if there is any significance towards the production of effective nanotubes. To determine this, the synthesized nanoparticles will be characterized by scanning electron microscopy (SEM), UV visible absorption spectroscopy, and photoluminescence spectroscopy (PL).

Methods: 50 Mg of silicon wafer are added with differing ratios of ligand (CHP), 5mL of water, and 3 steel iron balls into a ball milling vial. Vials are then placed into a ball milling apparatus for 7 cycles or 3.5 hours. Once the cycles are complete, …


Survey Of The Performance Of 5 Nm Goldnanoparticles Within An Ssdna-Stabilizedbiosensor For The Detection Of Hg2+, Madalyn J. Zagajowski Mar 2024

Survey Of The Performance Of 5 Nm Goldnanoparticles Within An Ssdna-Stabilizedbiosensor For The Detection Of Hg2+, Madalyn J. Zagajowski

ELAIA

The formation of a fluorescent biosensor complex consisting of 5 nm diameter gold nanoparticles (AuNPs) and single-stranded DNA (ssDNA) was conducted using a low-cost, efficient binding method. The analytical potential for the complex to detect mercuric ions (Hg2+) in an aqueous solution was assessed through the collection of UV-vis and fluorescence spectrometry data for the AuNP-ssDNA complex. The researcher aimed to investigate this potential in case the nanoparticles formed utilizing this method were too small to result in detectable fluorescence. To eliminate this possibility, the complex synthesized from this specific method was qualitatively evaluated to determine if it consistently and …


Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng Feb 2024

Automated Workflow For Redox Potentials And Acidity Constants Calculations From Machine Learning Molecular Dynamics, Feng Wang, Jun Cheng

Journal of Electrochemistry

Redox potentials and acidity constants are key properties for evaluating the performance of energy materials. To achieve computational design of new generation of energy materials with higher performances, computing redox potentials and acidity constants with computational chemistry have attracted lots of attention. However, many works are done by using implicit solvation models, which is difficult to be applied to complex solvation environments due to hard parameterization. Recently, ab initio molecular dynamics (AIMD) has been applied to investigate real electrolytes with complex solvation. Furthermore, AIMD based free energy calculation methods have been established to calculate these physical chemical properties accurately. However, …


Measurements Of Rate Constant For Electrode Reactions, Lian-Huan Han, Jia-Yao Guo, Miao-Miao Cui Feb 2024

Measurements Of Rate Constant For Electrode Reactions, Lian-Huan Han, Jia-Yao Guo, Miao-Miao Cui

Journal of Electrochemistry

Standard electron-transfer rate constant is one of the intrinsic properties for an electrochemical reaction, which is significant in the study of electrode kinetics. It is a key criterion for one to clarify the mechanism and pathway of a specific electrochemical reaction, and to screening and design the electrocatalysts and battery materials. Herein, we will introduce the measuring methods of rate constant for electrode reactions, including polarization curve, rotating disk electrode, ultramicroelectrode, scanning electrochemical microscopy, electrochemical impedance spectroscopy, current step, potential step and cyclic voltammetry, etc., to provide a guide to investigate electrode kinetics for graduate students and researchers in the …


Univariate Optimization Of Dispersive Liquid-Liquid Microextraction For Preconcentration Of Lead From Environmental Matrices, Samawah Region Prior To Quantification Using Flame Atomic Absorption Spectroscopy, Zaman Sahb Mehdi, Saher A. Ali Alshamkhawy Feb 2024

Univariate Optimization Of Dispersive Liquid-Liquid Microextraction For Preconcentration Of Lead From Environmental Matrices, Samawah Region Prior To Quantification Using Flame Atomic Absorption Spectroscopy, Zaman Sahb Mehdi, Saher A. Ali Alshamkhawy

Al-Bahir Journal for Engineering and Pure Sciences

In this work, a procedure based on dispersive liquid₋liquid microextraction for lead (Pb) preconcentration and quantification in an environmental matrix by flame atomic absorption spectroscopy (FAAS) was applied. A case-study approach was chosen to obtain further in-depth information on the Pb levels. The green chemistry principles have been applied for the pretreatment and preparation of real samples by focusing on some features such as the volume of reagents/sample, employ of energy efficient equipment, and production of waste. A univariate strategy was utilized to achieve the optimum extraction conditions. 1750 µL of acetonitrile containing 100 µL of carbon tetrachloride, were rapid …


Papain-Catalyzed Synthesis Of Oligolysine In Low-Water Organic Reaction Media, Lakshmi Priya Ravikrishna, Krishnamurthi Tamilarasan, Vairamani Mariappanadar, Shubhender Kapila, Mathur Rajesh Feb 2024

Papain-Catalyzed Synthesis Of Oligolysine In Low-Water Organic Reaction Media, Lakshmi Priya Ravikrishna, Krishnamurthi Tamilarasan, Vairamani Mariappanadar, Shubhender Kapila, Mathur Rajesh

Chemistry Faculty Research & Creative Works

Oligopeptides of l-lysine have the potential for applications in various scientific and technical areas. The number of residues in polycationic compounds such as oligolysine is also reported to have an effect on its biological properties. Hence, there is a necessity for developing efficient oligolysine synthesis methods where the oligopeptide dispersity can be tailored, along with optimum yield values. The ability of proteases to reverse their proteolytic activity to synthesize peptides has been reported in the literature. However, protease-catalyzed synthesis of oligopeptides of basic amino acids such as lysine in aqueous buffers is hindered by unfavorable thermodynamics. In this work, a …


The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry Jan 2024

The Top Ten Scientific Questions In Electrochemistry, Chinese Society Of Electrochemistry

Journal of Electrochemistry

No abstract provided.


Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang Jan 2024

Monodispersed Cu-Tcpp/Cu2O Hybrid Microspheres: A Superior Cascade Electrocatalyst Toward Co2 Reduction To C2 Products, Zi-Xuan Wan, Aidar Kuchkaev, Dmitry Yakhvarov, Xiong-Wu Kang

Journal of Electrochemistry

The electrochemical conversion of carbon dioxide (CO2) into valuable chemicals is a feasible way to mitigate the negative impacts of overmuch CO2 emissions. Porphyrin-based metal organic frameworks (MOFs) are expected to be used for selective and efficient electrochemical CO2 reduction (ECR) with porous structure and ordered active sites. Herein, we report the synthesis of a monodispersed and spherical organic/inorganic hybrid Cu-TCPP@Cu2O electrocatalyst composed of Cu-TCPP (TCPP=tetrakis (4-carboxyphenyl) porphyrin) and Cu2O, where TCPP plays significant roles in regulating the morphology. In-situ formed Cu during ECR process in combination with Cu-TCPP (Cu-TCPP@Cu) can suppress …


Investigating The Effect Of Relative Humidity On Organic New Particle Formation From The Dark Ozonolysis Of Biogenic Volatile Organic Compounds, Austin Callum Flueckiger Jan 2024

Investigating The Effect Of Relative Humidity On Organic New Particle Formation From The Dark Ozonolysis Of Biogenic Volatile Organic Compounds, Austin Callum Flueckiger

Graduate College Dissertations and Theses

Solid or liquid particulate matter suspended in the air, also known as atmospheric aerosols, are a ubiquitous component of Earth’s atmosphere. It is important to understand the chemical and physical processes that lead to the formation of these aerosols as they have an impact on climate health and human health. An important subset of atmospheric aerosols are secondary organic aerosols (SOA) that form from the gas-phase oxidation of volatile organic compounds (VOCs). VOCs can be emitted via biogenic and anthropogenic pathways, however, global estimates place biogenic sources as the major contributor. Although widely studied, some of the fundamental mechanisms that …


Measuring The Properties Of Rod-Shaped Bacteria By Single-Entity Electrochemistry, Ashley Tubbs Jan 2024

Measuring The Properties Of Rod-Shaped Bacteria By Single-Entity Electrochemistry, Ashley Tubbs

Theses and Dissertations

Antibiotic-resistant bacteria pose a significant and escalating threat to hospitals around the world, necessitating the development of rapid and sensitive detection methods. Single-entity electrochemistry has emerged as a promising approach for detecting and identifying such bacteria, and monitoring the efficacy of antibiotics in real-time. Herein, we employ the translational diffusion equation for circular cylinders to predict the collision frequency of rod-shaped bacteria, informing our experimental setup. Our work demonstrates that lab-fabricated Pt ultramicroelectrodes can sensitively detect bacteria at femtomolar concentrations under migration-controlled conditions. Further, we present a method implemented in MatLab to automate the analysis of step-like signals observed in …


Role Of Relative Humidity In New Particle Formation From Ozonlysis Of Atmospheric Volatile Organic Compounds, Christopher Snyder Jan 2024

Role Of Relative Humidity In New Particle Formation From Ozonlysis Of Atmospheric Volatile Organic Compounds, Christopher Snyder

Graduate College Dissertations and Theses

The impact of relative humidity (RH) on organic new particle formation (NPF) from ozonolysis of biogenic volatile organic compounds (BVOCs) remains an area of active debate. Previous reports provide contradictory results indicating both depression and enhancement of NPF under conditions of moderate RH, while others ignore the potential impact. Only several reports have suggested that the effect may depend on absolute mixing ratio of the precursor volatile organic compound (VOC, ppbv). However, before any experiments could be completed, development of new methods was necessary to overcome the limitation of sampling ultrafine nanoparticles (<50 nm aerodynamic diameter) with aerosol mass spectrometry. This dissertation includes a report on a new Particle Growth Apparatus (PaGA) that artificially grows particles from as small as 17 nm to over 110nm. Considerable effort was made to identify the most suitable growth matrix (squalane) and optimize particle growth for reproducibility and sensitivity.

The PaGA was then utilized in the …