Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Translational Medical Research

PDF

Selected Works

Nicholas Whiting

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya Aug 2016

Developing Hyperpolarized Silicon Particles For In Vivo Mri Targeting Of Ovarian Cancer, Nicholas Whiting, Jingzhe Hu, Niki M. Zacharias, Ganesh L. R. Lokesh, David E. Volk, David G. Menter, Rajesha Rupaimoole, Rebecca Previs, Anil K. Sood, Pratip Bhattacharya

Nicholas Whiting

Silicon-based nanoparticles are ideally suited for use as biomedical imaging agents due to their biocompatibility, biodegradability, and simple surface chemistry that facilitates drug loading and targeting. A method of hyperpolarizing silicon particles using dynamic nuclear polarization, which increases magnetic resonance imaging signals by several orders-of-magnitude through enhanced nuclear spin alignment, has recently been developed to allow silicon particles to function as contrast agents for in vivo magnetic resonance imaging. The enhanced spin polarization of silicon lasts significantly longer than other hyperpolarized agents (tens of minutes, whereas <1  min for other species at room temperature), allowing a wide range of potential …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya Dec 2015

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.


Hyperpolarization Methods For Mrs, Boyd M. Goodson, Nicholas Whiting, Aaron M. Coffey, Panayiotis Nikolaou, Fan Shi, Brogan M. Gust, Maxwell E. Gemeinhardt, Roman Shchepin, Jason G. Skinner, Jonathan R. Birchall, Michael J. Barlow, Eduard Y. Chekmenev Dec 2014

Hyperpolarization Methods For Mrs, Boyd M. Goodson, Nicholas Whiting, Aaron M. Coffey, Panayiotis Nikolaou, Fan Shi, Brogan M. Gust, Maxwell E. Gemeinhardt, Roman Shchepin, Jason G. Skinner, Jonathan R. Birchall, Michael J. Barlow, Eduard Y. Chekmenev

Nicholas Whiting

This article covers the fundamental principles and practice of NMR hyperpolarization techniques, which are proving useful for in vivo magnetic resonance spectroscopy (MRS) studies of metabolism in animal models, and clinical trials with hyper-enhanced sensitivity. Fundamentally, hyperpolarization methods enhance nuclear spin polarization by orders-of-magnitude, resulting in concomitant improvement in NMR detection sensitivity. The hyperpolarization methods described here – dynamic nuclear polarization (DNP), para-hydrogen induced polarization (PHIP), signal amplification by reversible exchange (SABRE), and spin-exchange optical pumping (SEOP) – are capable of achieving nuclear spin polarization approaching the theoretical maximum of unity on nuclear spin sites of molecular or atomic agents …