Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer Chemistry

PDF

Theses/Dissertations

2014

Institution
Keyword
Publication

Articles 1 - 30 of 45

Full-Text Articles in Chemistry

Template-Assisted Fabrication Of Ferromagnetic Nanomaterials, Jagnyaseni Tripathy Dec 2014

Template-Assisted Fabrication Of Ferromagnetic Nanomaterials, Jagnyaseni Tripathy

University of New Orleans Theses and Dissertations

Abstract

Template assisted deposition was used to produce various nanomaterials including simple nanowires, nanorods, multi-segmented metal nanowires, core-shell nanowires, alloy and polymer wires and tubes. Anodized aluminum oxide (AAO) membranes were used as templates for the growth of the various structures using an electrochemical deposition method and also by wetting the porous templates. In the electrochemical deposition method, the pore size of the templates affects the rate of synthesis and the structures of the nanomaterials while in the wetting method, the viscosity and reaction time in the polymer solution influence the structures of the nanomaterials.

A conventional two-step anodization procedure …


Production And Applications Of Formaldehyde-Free Phenolic Resins Using 5-Hydroxymethylfurfural Derived From Glucose In-Situ, Yongsheng Zhang Dec 2014

Production And Applications Of Formaldehyde-Free Phenolic Resins Using 5-Hydroxymethylfurfural Derived From Glucose In-Situ, Yongsheng Zhang

Electronic Thesis and Dissertation Repository

The phenol-formaldehyde (PF) resin manufacturing industry is facing a growing challenge with respect to concerns over human health, due to the use of carcinogenic formaldehyde and sustainability due to the use of petroleum-based phenol in PF resin manufacture. Glucose and its derivative, 5-hydroxymethylfurfural (5-HMF), have proven to be potential substitutes for formaldehyde in the synthesis of phenolic novolac resins.

This thesis investigated a number of glucose and 5-HMF resin systems including the curing of phenol-glucose novolac resin (PG) with a bis-phenol-A type epoxy. The curing process was modeled according to the Sestak-Berggren equation (S, B) using Málek methods. This was …


Polyglyoxylates: A New Class Of Triggerable Self-Immolative Polymers, Bo Fan Dec 2014

Polyglyoxylates: A New Class Of Triggerable Self-Immolative Polymers, Bo Fan

Electronic Thesis and Dissertation Repository

Self-immolative polymers, which degrade by an end-to-end depolymerization mechanism in response to the cleavage of a stabilizing end-cap from the polymer terminus, are of increasing interest for a wide variety of applications ranging from sensors to controlled release. However, the preparation of these materials often requires expensive, multi-step monomer syntheses and the degradation products such as quinone methides or phthalaldehydes are potentially toxic to humans and the environment. We demonstrate here that polyglyxoylates can serve as a new and versatile class of self-immolative polymers. Polymerization of the commercially available monomer ethyl glyoxylate, followed by end-capping with a 6-nitroveratryl carbonate provides …


Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa Dec 2014

Poly(Ester Amide) And Poly(Ethyl Glyoxylate) Nanoparticles For Controlled Drug Release, Amira Mohamed Moustafa

Electronic Thesis and Dissertation Repository

The objective of this research was to develop polymeric nanoparticles (NPs) having improved drug release properties for drug delivery. Poly(ester amide)s (PEAs) are promising biodegradable polymers. PEA NPs were prepared via emulsification-evaporation and salting-out methods and optimized through by varying different processing parameters. Polymer-model drug conjugates based on PEAs containing L-aspartic acid and rhodamine B were synthesized and used for NP preparation. Release behavior was studied and compared to a control system with physically encapsulated rhodamine B. It was shown that the release of rhodamine B from the covalent system did not show the burst effect and exhibited a slower …


Designing Magnetically Responsive Ultrafiltration Membranes, Robert William Dong Dec 2014

Designing Magnetically Responsive Ultrafiltration Membranes, Robert William Dong

Graduate Theses and Dissertations

Ultrafiltration (UF) membranes developed out of a need for protein separation processes. Currently, they are used in a variety of industries ranging from food manufacturing to pharmaceuticals for two main purposes: concentration, separation, and buffer exchange. UF membrane processes in product streams undergo frequent use and like all membrane processes experience a gradual decline in performance due to fouling phenomena both irreversible and reversible. Ultimately, performance declines to a point where the UF membrane needs to be replaced. Frequent replacement of UF membranes is detrimental to major industries that require high product throughput using UF processes. Thus, it is important …


Computational And Experimental Investigation Into Yield Behavior And Cure Rate Dependence Of Thermoset Polymers, Christopher Harold Childers Dec 2014

Computational And Experimental Investigation Into Yield Behavior And Cure Rate Dependence Of Thermoset Polymers, Christopher Harold Childers

Dissertations

This dissertation is broken down into two primary sections: firstly, the development and improvement of molecular dynamics simulations of thermoset matrix polymers including their use in understanding molecular response to applied strain deformation and secondly, the discernment of a cure heating ramp rate dependence of the final molecular and macro-molecular properties of thermoset matrix polymer.

The molecular dynamics section will discuss the development of molecular dynamics simulations of thermoset epoxy/amine matrix polymers, and the implementation of this work to determine the underlying molecular level events that cause thermoset matrix polymer yield. It will report a novel method for the determination …


Continuous Polymer Reactor Design, David Sujay Kingsley Dec 2014

Continuous Polymer Reactor Design, David Sujay Kingsley

Dissertations

Twin screw extruders can be used as continuous polymer reactors to process polymers, which are conventionally made through batch reactors. Batch processes have certain undesirable qualities such as improper mixing and the inability to precisely control the reaction, which leads to variation between batches and potential exotherms. The work presented in this dissertation investigates the use of continuous polymer reactor designs to efficiently process renewable sourced thermoplastic polyurethanes (TPU), and prepreg epoxy matrix prepolymers.

The overall goal of this research is to highlight the modularity of twin screw extruders as continuous polymer reactors to synthesize the relevant polymers. Chapter I …


Investigation Of Glassy State Molecular Motions In Thermoset Polymers, Jianwei Tu Dec 2014

Investigation Of Glassy State Molecular Motions In Thermoset Polymers, Jianwei Tu

Dissertations

This dissertation presents the investigation of the glassy state molecular motions in isomeric thermoset epoxies by means of solid-state deuterium (2H) NMR spectroscopy technique. The network structure of crosslinked epoxies was altered through monomer isomerism; specifically, diglycidyl ether of bisphenol A (DGEBA) was cured with isomeric amine curatives, i.e., the meta-substituted diaminodiphenylsulfone (33DDS) and para-substituted diaminodiphenylsulfone (44DDS). The use of structural isomerism provided a path way for altering macroscopic material properties while maintaining identical chemical composition within the crosslinked networks.

The effects of structural isomerism on the glassy state molecular motions were studied using solid-state 2H …


Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley Dec 2014

Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley

Dissertations

The advent of controlled radical polymerization (CRP) techniques, along with advancements in facile conjugation chemistry, now allow synthetic tailoring of precise, polymeric architectures necessary for drug/gene delivery. Reversible addition- fragmentation chain transfer (RAFT) polymerization and its aqueous counterpart (aRAFT) afford quantitative control over key synthetic parameters including block length, microstructure, and placement of structo-pendent and structo-terminal functionality for conjugation of active agents and targeting moieties. The relevance of water-soluble and amphiphilic (co)polymers synthesized by RAFT for in vitro delivery of therapeutics in biological fluids is an especially attractive feature. In many cases, polymerization, binding, conjugation, …


Tuning Responsiveness Of Polypeptide Based Block Copolymers For Drug Delivery, Ashley J. Johnson Dec 2014

Tuning Responsiveness Of Polypeptide Based Block Copolymers For Drug Delivery, Ashley J. Johnson

Dissertations

The goal of this dissertation was to tune the pH response and self-assembled morphologies of amphiphilic polypeptide block copolymers for use as drug delivery vehicles. Poly(L-lysine) and poly(L-glutamtic acid) are responsive, ionizable polypeptides that undergo secondary structure transitions, from α-helix to random coil, whereby the change in conformation of the peptide chain results in changes to the global morphology of a self-assembled system. The main focus of this work was to understand how changes in the polymer composition and the local environment can lead to control over the behavior of the overall system. First, the responsive behavior of poly(L-lysine) block …


Speciation Of Pentavalent Technetium Complexes With Aniline And Thiobenzene Derivatives, Kyle E. Childs Dec 2014

Speciation Of Pentavalent Technetium Complexes With Aniline And Thiobenzene Derivatives, Kyle E. Childs

UNLV Theses, Dissertations, Professional Papers, and Capstones

The reaction of bidentate aniline oligomers with pentavalent technetium has been investigated previously through the reaction of (n-Bu4N)TcOCl4 with o-phenylenediamine (PDA). The initial studies found that PDA reacted in a 1 to 2 molar ratio with pentavalent technetium in in ethanol. This study was expanded by the examination of a second aniline derivatives, 2-aminophenol (AMP)) and two thiobenzene derivatives (2-mercaptophenol (MP) and thiosalicylic acid (TSA)) to evaluate the kinetic formation of these complexes with pentavalent technetium. The pentavalent technetium complexes all showed reactivity with technetium having a coordination numbers of 5 with all ligands reacting in a 1 to 2 …


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Nov 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of colloids. …


Guanidinium-Rich Romp Polymers Drive Phase, Charge, And Curvature-Specific Interactions With Phospholipid Membranes, Michael T W Lis Nov 2014

Guanidinium-Rich Romp Polymers Drive Phase, Charge, And Curvature-Specific Interactions With Phospholipid Membranes, Michael T W Lis

Doctoral Dissertations

Protein transduction domains (PTDs) and their and their synthetic mimics are short sequences capable of unusually high uptake in cells. Several varieties of these molecules, including the arginine-rich Tat peptide from HIV, have been extensively used as vectors for protein, DNA, and siRNA delivery into cells. Despite the wide-ranging utility of PTDs and their mimics, their uptake mechanism is still under considerable debate. How the molecules are able to cross phospholipid membranes, and what structural components are necessary for optimal activity are poorly understood. This thesis explores how PTDMs interact with phospholipid membrane phase, anionic lipid content and negative Gaussian …


Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch Nov 2014

Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch

Doctoral Dissertations

Encapsulation of materials can be performed through the stabilization of fluid-fluid interfaces and the formation of emulsion droplets, which is commonly achieved with surfactants, including small molecules and polymers, as well as particles that are, typically, micron-scale in diameter. The worked contained in this dissertation centered on droplets that are stabilized by nanoparticles, including metallic nanoparticles and semiconductor quantum dots, which bring the conductive and fluorescent properties inherent to such nanoparticles into the droplet construction. Double emulsion droplets, both oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) were formed using nanoparticles as the only surfactant in solution. Different types of nanoparticles were found …


On The Assembly Of Functionalized Cdse Nanorods, Sirinya Chantarak Nov 2014

On The Assembly Of Functionalized Cdse Nanorods, Sirinya Chantarak

Doctoral Dissertations

High aspect ratio (AR) CdSe nanorods (NRs) of well-defined sizes were synthesized to optimize the geometries of photovoltaic devices made from these nanorods. Long-range ordering of hexagonal arrays of high AR NRs is achieved by a combination of controlled solvent evaporation and the use of an applied electric field. Regioregular P3HT chains and oligothiophene were functionalized with ligating end-groups to provide contact to the NRs. Vertically oriented assemblies of CdSe NRs functionalized with terthiophene and polythiophene are also obtained. Hexagonal arrays of these nanocomposites were characterized by transmission electron microscopy (TEM). Three types of polythiophenes: poly(3-hexylthiol thiophene), poly(3-hexylamine thiophene), and …


Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung Oct 2014

Impact Of Nanostructure On Polymer-Based Nonvolatile Memory Devices, Seung Hyun Sung

Open Access Theses

Memory functionality is essential for many high-end electronic applications (e.g. , smart phones, personal computers). Particularly, organic nonvolatile memory devices based on polymer ferroelectric materials are a promising approach toward the development of low-cost memory due to the ease of processing and flexibility associated with the device. Here, we will focus on a memory device with a two-component active layer and a diode structure. This ferroelectric diode (FeD) has a nanostructured active layer, composed of ferroelectric and semiconducting polymers, and it can provide easy access to high-performance polymer-based memory devices. In order to create these nanostructured active layers, we …


Supramolecular Biopolymeric Composite Materials: Green Synthesis, Characterization And Applications, Tamutsiwa Moven Mututuvari Oct 2014

Supramolecular Biopolymeric Composite Materials: Green Synthesis, Characterization And Applications, Tamutsiwa Moven Mututuvari

Dissertations (1934 -)

Macrocycles, such as crown ethers (CRs) and resorcinarenes (RESs), exhibit selective complexation of heavy metal ions and organic pollutants respectively. Consequently, they have been investigated for their suitability in adsorbing these aqueous pollutants. However, they are difficult to handle and recycle for reuse because, by themselves, they can only be fabricated in powder form. To alleviate this challenge, we developed a method to encapsulate these macrocycles into film-forming polysaccharides--cellulose (CEL) and chitosan (CS). This was achieved by using a green and recyclable solvent, an ionic liquid, to dissolve both macrocycles and polysaccharides and regenerate corresponding composites in water. Resultant composites …


Functional Phosphorylcholine Polymers: Prodrugs And Biomaterials, Samantha B.M. Page Aug 2014

Functional Phosphorylcholine Polymers: Prodrugs And Biomaterials, Samantha B.M. Page

Doctoral Dissertations

This thesis describes the synthesis and applications of multifunctional, hydrophilic polymers consisting of a methacrylate backbone and zwitterionic phosphorylcholine (PC) pendent groups, prepared by free radical polymerization of the zwitterionic monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC). Advances in polymer chemistry, applied to PC polymers, allowed for the preparation of well-defined structures with controlled molecular weight, narrow polydispersity, and facile incorporation of functional comonomers, giving breadth to the range of materials accessible for different applications. Built-in functionality included fluorophores and reactive groups for post-polymerization transformations, such as drug conjugation or cross-linking. The ability to form well-defined structures based on the polyMPC backbone is …


Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu Aug 2014

Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu

Doctoral Dissertations

In bulk heterojunction (BHJ) thin film organic photovoltaics (OPV), morphology control is critical to obtain good device efficiency. Nanoscale phase separation that creates bicontinuous interpenetrating structure on a size scale commensurate with exciton diffusion length (~10 nm) is thought to be the ideal morphology. Results obtained from this work indicate that morphology can be affected by chemical structure of the polymer, processing conditions, blending ratio and post treatments. Physical properties of the material, such as crystallinity, crystal orientation, material interactions and miscibility, surface energy and particle aggregations are critical for determining the morphology and thus the device performance. Previous investigations …


Visualizing And Controlling Charge Transport In Conjugated Polymer Networks And Films, Andrew Davis Aug 2014

Visualizing And Controlling Charge Transport In Conjugated Polymer Networks And Films, Andrew Davis

Doctoral Dissertations

VISUALIZAING AND CONTROLLING CHARGE TRANSPORT IN CONJUGATED POLYMER NETWORKS AND FILMS MAY 2014 ANDREW R. DAVIS, B.S., UNIVERSITY OF VIRGINIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Kenneth R. Carter The desire for more commercially feasible flexible electronic plastics has led to the development of increasingly complex conjugated polymer architectures and device geometries. Through these efforts, tremendous advances have been made in the design and performance of electronic devices fabricated with solution-processable semiconducting polymers. However, none of these materials have yet reached commercial maturity, so the opportunity for their further exploration from both a …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres Aug 2014

Ligand-Receptor Interactions For Supramolecular Disassembly With Applications In Screening And Drug Delivery, Diego Amado Torres

Doctoral Dissertations

Proteins have the capacity to bind specific sets of compounds known as ligands, these are small molecules with a recurrent theme in their molecular design that is a characteristic exploited here to (i) identify particular affinities of small molecules for proteins with the aim of using them as ligands, inhibitors, or targeting moieties in more complex systems by means of a methodology that screens small molecules based on protein affinity; (ii) decorate a self-assembling supramolecular system at different positions, making it responsive to a complementary protein with the aim of exploring differences in disassembly and sensitivity of the release of …


Synthesis Of Carbohydrate Functionalized Dendrons For Use As Multivalent Scaffold And In Self-Assembled Structures, Namrata Jain Aug 2014

Synthesis Of Carbohydrate Functionalized Dendrons For Use As Multivalent Scaffold And In Self-Assembled Structures, Namrata Jain

Electronic Thesis and Dissertation Repository

Carbohydrates are implicated in a large number of biological processes ranging from cell-cell interactions to bacterial and viral infection. Lectins are carbohydrate-binding proteins that are generally specific for certain sugars. However, typical carbohydrate–lectin interactions tend to have very low monomeric binding affinities. In many cases, the binding of saccharide ligands by protein receptors can be improved significantly through the attachment of multiple saccharide residues to a common support. Dendronized polymers constitute a class of macromolecules whose nanoscale size, rigidity, and functionality can be controlled with precision by tuning their molecular architecture. It is hypothesized that due to their large size …


Synthesis And Applications Of Mutimodal Hybrid Albumin Nanoparticles For Chemotherapeutic Drug Delivery And Phototherml Therapy Platforms, Donna V. Peralta Aug 2014

Synthesis And Applications Of Mutimodal Hybrid Albumin Nanoparticles For Chemotherapeutic Drug Delivery And Phototherml Therapy Platforms, Donna V. Peralta

University of New Orleans Theses and Dissertations

Progress has been made in using human serum albumin nanoparticles (HSAPs) as carrier systems for targeted treatment of cancer. Human serum albumin (HSA), the most abundant human blood protein, can form HSAPs via a desolvation and crosslinking method, with the size of the HSAPs having crucial importance for drug loading and in vivo performance. Gold nanoparticles have also gained medicinal attention due to their ability to absorb near-infrared (NIR) light. These relatively non-toxic particles offer combinational therapy via imaging and photothermal therapy (PPTT) capabilities.

A desolvation and crosslinking approach was employed to encapsulate gold nanoparticles (AuNPs), hollow gold nanoshells (AuNSs), …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Modified-Electrodes For Redox-Magnetohydrodynamic (Mhd) Pumping For Microfluidic Applications, Christena Kayl Nash Aug 2014

Modified-Electrodes For Redox-Magnetohydrodynamic (Mhd) Pumping For Microfluidic Applications, Christena Kayl Nash

Graduate Theses and Dissertations

A new microfluidic pumping and stirring technique was demonstrated for lab-on-a-chip applications. Microfluidics was accomplished via redox-MHD, which takes advantage of a body force (FB) that is generated when there is a net movement of ions in solution (j) in the presence of a perpendicular magnetic field (B), according to the equation FB = j×B. In this work the movement of ions in solution was generated using electrodes modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) rather than a redox species in solution, which can interfere with analyte detection and with biological species. …


Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan Jul 2014

Correlating Molecular Architecture Of A Radical Polymer Based Copolymer With Its Electrical Transport Properties, Holly Chan

Open Access Theses

The design and synthesis of electrically-conductive macromolecules can lead to significant improvements in the performance of polymer-based energy conversion devices (e.g., thermoelectric devices). For these organic electronic devices, conjugated polymers have dominated the area of conductive polymers; however, these materials are usually synthesized using conditions that lead to poorly-defined polymers. Furthermore, in these increasingly-standard polymers, the charge transport ability of the polymer thin films is largely affected by the degree of crystallinity, which is a difficult property to control in a reproducible fashion. Therefore, we seek to explore a new class of amorphous, non-conjugated polymers containing a stable radical …


Development And Implementation Of Dispersion Phase Diagrams (Dpds) For Four Different Hydrophobically Modified Ethoxylated Urethane (Heur) Based Acrylic Paint Systems, Tyler J. Bell Jun 2014

Development And Implementation Of Dispersion Phase Diagrams (Dpds) For Four Different Hydrophobically Modified Ethoxylated Urethane (Heur) Based Acrylic Paint Systems, Tyler J. Bell

Master's Theses

Latex polymers serve as binders in a wide range of architectural paints and coatings. A latex is an aqueous colloidal dispersion of polymer particles that when dried above the polymer’s film formation temperature coalesces into a dry polymer film (Dragnevski, Routh, Murray, & Donald, 2010). The other main components of paint include associative thickeners, surfactants, pigments and fillers with the thickener being the primary area of focus for this study.

The relatively simple system of latex, associative thickener and surfactant has been studied extensively. These studies have shown the mechanism of thickening for the associative thickener, and surfactant effects on …


An Investigation Of Poly(N-Isopropylacrylamide) For Applications With Microfluidic Paper-Based Analytical Devices, Haydn Thomas Mitchell Jun 2014

An Investigation Of Poly(N-Isopropylacrylamide) For Applications With Microfluidic Paper-Based Analytical Devices, Haydn Thomas Mitchell

Master's Theses

N,N′-methylenebisacrylamide-crosslinked poly(N-isopropylacrylamide), also known as P(NIPAM), was developed as a fluid delivery system for use with microfluidic paper-based analytical devices (microPADs). MicroPADs are postage-stamp-sized devices made out of paper that can be used as platforms for low-cost, simple-to-use point-of-care diagnostic assays. P(NIPAM) is a thermally responsive polymer that absorbs aqueous solutions at room temperature and will expel the solutions to microPADs when heated. The fluid delivery characteristics of P(NIPAM) were assessed, and P(NIPAM) was able to deliver multiple solutions to microPADs in specific sequences or simultaneously in a laminar-flow configuration. P(NIPAM) was then shown to be suitable …


Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson Jun 2014

Improving Hybrid Solar Cells: Overcoming Charge Extraction Issues In Bulk Mixtures Of Polythiophenes And Zinc Oxide Nanostructures, Grant T. Olson

Master's Theses

Organic photovoltaics (OPVs) have received a great deal of focus in recent years as a possible alternative to expensive silicon based solar technology. Current challenges for organic photovoltaics are centered around improving their lifetimes and increasing their power conversion efficiencies. One approach to improving the lifetime of such devices has been the inclusion of inorganic metal oxide layers, but interaction between the metal oxides and common conjugated polymers is not favorable. Here we present two methods by which the interactions between polythiophenes and nanostructured ZnO can be made to be more favorable. Using the first method, direct side on attachment …