Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Chemistry

Expanding The Polymer Zwitterion Library – Novel Phosphonium-Based Polymer Zwitterions And Analogous Structures, Marcel U. Brown Oct 2022

Expanding The Polymer Zwitterion Library – Novel Phosphonium-Based Polymer Zwitterions And Analogous Structures, Marcel U. Brown

Doctoral Dissertations

This dissertation encompasses the synthesis, characterization and application of novel polymer zwitterions that significantly expand the library of available zwitterionic polymers. Their facile synthesis is facilitated by the preparation of a novel functional sultone precursor molecule, which can be ring-opened by commercially available phosphine, amine and sulfide nucleophiles, affording phosphonium, ammonium or sulfonium sulfonate monomers, respectively. Most notably, this work describes the invention of phosphonium-based polymer zwitterions, establishing a new class of zwitterionic polymer structures with unique solution and interfacial properties. Furthermore, the incorporation of these phosphonium sulfonates into block copolymer architectures with conventional polymer zwitterions, and the resulting switchable …


Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws Aug 2022

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


Developing Injectable And Implantable Polymer Zwitterion Platforms For Glioblastoma Treatment, Sarah Ward Mar 2022

Developing Injectable And Implantable Polymer Zwitterion Platforms For Glioblastoma Treatment, Sarah Ward

Doctoral Dissertations

This dissertation describes the synthesis, characterization, and application of novel polymer zwitterion-drug conjugates intended for treating glioblastoma, with a particular focus on phosphorylcholine (PC) and temozolomide (TMZ). Using versatile TMZ-containing monomers, injectable polymer prodrugs and implantable polymeric hydrogels were prepared over a broad range of drug incorporations with tunable properties, making them ideally suited for further in vivo and clinical evaluations. The work presented here greatly expands the knowledge base of TMZ formulations and gives rise to several routes which circumvent the challenges associated with its use. Chapter 2 describes the incorporation of a novel TMZ-methacrylate monomer into random and …


Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez Sep 2021

Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez

Doctoral Dissertations

There are several molecular level mechanisms at the origin of biological functions that serve as inspiration for the development of the “next generation” of materials that display adaptive and interactive properties. However, it will take time for synthetic materials to approach the level of complexity, robustness, and adaptability of biological systems. Although there are switchable platforms that respond via sensitized molecular components, there are currently no examples of materials that truly possess the type of autonomous behavior seen in biological systems. Even though these concepts are common in living organisms, their translation into a synthetic platform remains challenging to this …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Synthesis Of Novel Zwitterionic Polymers: From Functional Surfactants To Therapeutics, Matthew Skinner Mar 2018

Synthesis Of Novel Zwitterionic Polymers: From Functional Surfactants To Therapeutics, Matthew Skinner

Doctoral Dissertations

This dissertation describes the synthesis, characterization, and investigation of novel zwitterionic polymers containing phosphorylcholine (PC), sulfobetaine (SB), and functional choline phosphate (CP) zwitterions for use as surfactants, self-assembled nanomaterials, and therapeutics. Facile, reproducible, and modular chemistries were utilized for incorporating zwitterions into a range of polymer backbones, and strategies were developed for overcoming difficult challenges encountered in zwitterionic polymer synthesis, especially related to the varying solubility of zwitterions, hydrophobic polymers, and functional comonomers. Synthetic strategies utilized in this work give access to well-defined materials with narrow molecular weight distributions, tunable compositions and architectures, and versatile chemical functionality. Chapter 2 describes …


Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu May 2017

Effect Of Crosslinking On Carbon Nanotube Materials Through Chemical Treatment And Irradiation, Xinyi Lu

Doctoral Dissertations

Carbon nanotubes (CNTs) exhibit a variety of exceptional properties, especially their ultrahigh tensile strength on the order of 100GPa show promise for constituting the next-generation carbon fiber. However, challenges remain to translate these properties into useful technology, primarily due to the sliding of the tubes past one another under tensile loading. The work presented in this dissertation is focused on enhancing the interaction between the CNTs and their bundles in a macro-assembly, in order to improve the tensile properties of the material.

Applying inter-tube crosslinks has been predicted to significantly enhance the stress transfer between the CNT components. We developed …


Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown May 2017

Thermally Robust And Redox Active Catalysts: Studying Their Behavior For Ethylene And L-Lactide Polymerization, Lauren Ashley Brown

Doctoral Dissertations

The development of homogenous single-site catalysts has significantly impacted the field of organometallic chemistry. The well-defined structures of homogenous catalysts make it less cumbersome to understand and develop methods to tailor these compounds for specific catalytic processes. Currently, polymerization catalysis is a major division in organometallic chemistry due to the global demand for polymeric materials such as polyethylene (PE) and polypropylene (PP), based on their low-cost feedstock, remarkable mechanical properties, and their use in a wide range of applications. However, bioplastics have become a highly sought-after alternative to conventional petrochemical-based plastics due to their biodegradability and derivatization from renewable resources. …


Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki May 2017

Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki

Doctoral Dissertations

Polymer membranes are a valuable tool for separating components of liquid and gas mixtures. Heavily inspired by biological systems, the idea of using the intrinsic properties of polymers to perform otherwise energy-intensive tasks is attractive for applications such as water desalination, natural gas sweetening, and post-combustion carbon capture. Of particular interest to our research group, post-combustion carbon capture is a promising potential solution aimed at reducing the carbon footprint involved with production, transportation, and storage of electrical energy generation.

Every year, the United States produces close to seven billion metric tons of carbon dioxide, of which a significant portion is …


The Effect Of Illumination On The Conformation And Thermodynamics Of Conjugated Polymers, Brian Frank Morgan Dec 2016

The Effect Of Illumination On The Conformation And Thermodynamics Of Conjugated Polymers, Brian Frank Morgan

Doctoral Dissertations

This dissertation explores the effects which illumination has on the structure and conformation of conjugated polymers, both in solution and the bulk. Conjugated polymers are an important class of optoelectronic polymeric materials which make up the active layer of key organic electronic devices such as organic photovoltaics, transistors, and light emitting diodes. Considering the strong link between polymer chain structure and device efficiency in these materials, a comprehensive understanding of certain experimental conditions which may influence this conformation and thusly alter the functionality of the devices predicated upon them is of vital importance.

The first part of this dissertation provides …


Functional Hydrophilic Polymers For Solution Assembly And Non-Viral Gene Therapy, Rachel A. Letteri Nov 2016

Functional Hydrophilic Polymers For Solution Assembly And Non-Viral Gene Therapy, Rachel A. Letteri

Doctoral Dissertations

This thesis examines functional hydrophilic polymers designed in linear and comb architectures and that carry functional moieties in the context of solution assembly and non-viral gene therapy. Specifically, polymers containing cations, zwitterions, and reactive groups are investigated as non-viral gene therapy reagents and at oil-water interfaces on droplets. Cations facilitate complexation of nucleic acids and interaction with cellular and nuclear membranes, while zwitterions impart stimuli-responsive solution properties and biocompatibility. Reactive groups, including alkenes, alkynes, and benzylic methylenes, permit post-polymerization modification leading to tunable polymer properties in solution and at interfaces. This work expands the knowledge base related to solution, interfacial, …


The Effect Of Composition And Architecture On Polymer Behavior In Homopolymer Blends And Inter-Filament Bonding In 3d Printed Models, Edward Roy Duranty Dec 2015

The Effect Of Composition And Architecture On Polymer Behavior In Homopolymer Blends And Inter-Filament Bonding In 3d Printed Models, Edward Roy Duranty

Doctoral Dissertations

This dissertation presents work that increases our understanding of the effects of composition and architecture on copolymer structure and dynamics and how they affect material diffusion between filaments in a 3D printed model. Copolymers are polymer chains made up of at least two different monomers. The ordering and arrangement of the two monomer species within a copolymer can have drastic effects on the behavior and properties of the copolymer.

The first chapter of this dissertation examines how the copolymer composition affects the structure and dynamics of the chain in a homopolymer blend. This study used a modified Monte Carlo BFM …


Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli Aug 2015

Tunable Photonic Multilayers From Stimulus-Responsive, Photo-Crosslinkable Polymers, Maria C. Chiappelli

Doctoral Dissertations

This dissertation describes the synthesis of photo-crosslinkable copolymers and their utilization for the fabrication and testing of tunable and responsive one-dimensional (1D) photonic multilayers. Photonic multilayers exhibit structural color due to the interference of incident light at layer interfaces, providing a convenient route towards optically responsive materials that do not rely on potentially light- or oxygen-sensitive chromophore-containing pigments and dyes. A fabrication technique based on sequential spin-coating and crosslinking of photo-crosslinkable polymers is used to assemble tunable and responsive photonic multilayers. Chapter One introduces the fundamental underlying principles of 1D photonic structures and explores their importance in a variety of …


Polymer Additives Effects On Structure And Dynamics, Adam Eugene Imel Aug 2015

Polymer Additives Effects On Structure And Dynamics, Adam Eugene Imel

Doctoral Dissertations

This dissertation presents work that expands the understanding of the effect additives have on the structure and dynamics of a polymer matrix. Polymer additives are molecules, nanoparticles or fibers that are added to a polymer to modify the properties of the host polymer. Due to the vast amount of additives available, our studies were limited to C60 (C60), soft polystyrene nanoparticles, and poly(ethylene oxide).

The first part of this project examined the influence that C60 nanoparticles have on the assembly of polyacrylonitrile using small angle and wide-angle x-ray scattering techniques and viscometry. The addition of C60 (C60) …


Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch Nov 2014

Functional Nanoparticles At Interfaces: Emulsion Stabilization And Triggered Inversion, Caroline Laure Marie Miesch

Doctoral Dissertations

Encapsulation of materials can be performed through the stabilization of fluid-fluid interfaces and the formation of emulsion droplets, which is commonly achieved with surfactants, including small molecules and polymers, as well as particles that are, typically, micron-scale in diameter. The worked contained in this dissertation centered on droplets that are stabilized by nanoparticles, including metallic nanoparticles and semiconductor quantum dots, which bring the conductive and fluorescent properties inherent to such nanoparticles into the droplet construction. Double emulsion droplets, both oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) were formed using nanoparticles as the only surfactant in solution. Different types of nanoparticles were found …


Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell Aug 2014

Composition Dependence Of The Flory-Huggins Interaction Parameter In Polymer Blends: Structural And Thermodynamic Calculations, Travis H. Russell

Doctoral Dissertations

Flory-Huggins Theory has been the basis for understanding polymer solvent and blended polymer thermodynamics for much of the last 60 years. Within this theory, a parameter (χ) [chi] was included to quantify the enthalpic energy of dispersion between distinct components. Thin film self-assembly of polymer melts and block copolymers depends critically on this parameter, and in application, χ has generally been assumed to be independent of the concentrations of the individual components of the system. However, Small-Angle Neutron Scattering data on isotopic polymer blends, such as polyethylene and deuterated polyethylene, have shown a roughly parabolic concentration dependency for …


Synthesis And Temperature-Induced Phase Transfer Behavior Of Thermosensitive Hairy Particles Between Aqueous Solution And A Hydrophobic Ionic Liquid, Jonathan Michael Horton Aug 2012

Synthesis And Temperature-Induced Phase Transfer Behavior Of Thermosensitive Hairy Particles Between Aqueous Solution And A Hydrophobic Ionic Liquid, Jonathan Michael Horton

Doctoral Dissertations

This dissertation presents the synthesis of a family of thermosensitive polymer brush-grafted silica particles and the study of their thermally induced phase transfer behavior between water and a hydrophobic ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([EMIM][TFSA]). The hairy particles were prepared by surface-initiated atom transfer radical polymerization.

Chapter 1 describes the synthesis and phase transfer behavior of a series of 205 nm silica particles grafted with thermosensitive polymers of methoxyoligo(ethylene glycol) methacrylates. The hairy particles with sufficiently high lower critical solution temperatures underwent reversible and quantitative transfer between water and [EMIM][TFSA] in response to temperature changes. The transfer temperature (Ttr …