Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Chemistry

Application Of Single-Ion Conducting Polymer Electrolytes (Sicpes), Sheng Zhao Dec 2021

Application Of Single-Ion Conducting Polymer Electrolytes (Sicpes), Sheng Zhao

Doctoral Dissertations

Polymer electrolytes have been widely studied as a potential candidate for next generation batterie with improved safety and higher energy density. Especially, single-ion conducting polymer electrolytes (SICPEs) have attracted significant attention due to their almost unity lithium-ion transport number, which is believed to help suppress lithium dendrite growth and extend battery cycle life. However, there is still a long way to go before they can be practically applied in batteries, due to their relatively low ionic conductivity at ambient temperature. Therefore, the main goal of this work is to explore various methods that can improve the ionic conductivity of SICPEs …


Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman Dec 2021

Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman

Doctoral Dissertations

This dissertation presents experimental work that provide a foundation to rationally improve fused filament fabrication (FFF) and immiscible blend compatibilization. Objects generated from additive manufacturing processes, such as FFF, have intrinsic structural weaknesses which include two project specific examples: structural anisotropy and irreversible thermal strain. Due to low adhesion between individual print layers that results in macroscopic defects, the mechanical strength of printed objects when force is applied perpendicular to the build orientation is drastically reduced. In the first dissertation chapter, we present a protocol to produce interlayer covalent bonds by depositing multi-amine additives between individual layers of a print …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez Sep 2021

Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez

Doctoral Dissertations

There are several molecular level mechanisms at the origin of biological functions that serve as inspiration for the development of the “next generation” of materials that display adaptive and interactive properties. However, it will take time for synthetic materials to approach the level of complexity, robustness, and adaptability of biological systems. Although there are switchable platforms that respond via sensitized molecular components, there are currently no examples of materials that truly possess the type of autonomous behavior seen in biological systems. Even though these concepts are common in living organisms, their translation into a synthetic platform remains challenging to this …


Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha Sep 2021

Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha

Doctoral Dissertations

Nature has designed magnificent responsive systems by constructing several interacting molecular level networks for the recognition and propagation of chemical and biochemical information. One of the eminent characteristics of these systems is their capability to quickly transduce molecular scale recognition events into macroscopic or visually observable responses. Inspired by these systems present in nature, we became interested in developing artificial responsive systems with similar capabilities. This dissertation will feature four such systems that employ amphiphilic oligomers and polymers which were chosen as the scaffolds because of their high thermodynamic stability, low critical aggregation concentrations, convenient handles to incorporate functional group …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Stimuli-Responsive Polyelectrolytes: Thermosensitive Zwitterionic Polymers And Charged Shape-Changing Star Molecular Bottlebrushes, Evan M. Lewoczko Aug 2021

Stimuli-Responsive Polyelectrolytes: Thermosensitive Zwitterionic Polymers And Charged Shape-Changing Star Molecular Bottlebrushes, Evan M. Lewoczko

Doctoral Dissertations

This dissertation work investigated two classes of stimuli-responsive polyelectrolytes: thermosensitive zwitterionic poly(sulfobetaine methacrylate)s (PSBMAs) and charged shape-changing star molecular bottlebrushes (SMBs). While zwitterionic polymers are explored for numerous applications, their structure-solution behavior relationship was poorly understood. The first part of this dissertation focused on the effects of N-substituents of PSBMAs on their behavior in water. A series of PSBMAs were synthesized, with systematically changed N-substituents, including symmetric N-n-alkyl substituents of various lengths and asymmetric N-substituents comprising one methyl and either one cyclohexyl, phenyl or 2-hydroxyethyl group. The behavior of PSBMAs with symmetric N-substituents …


Development Of Catalysts For The Ring-Opening Polymerization Of Cyclic Esters And The Coordination-Insertion Polymerization Of Olefins, Alicia Doerr Aug 2021

Development Of Catalysts For The Ring-Opening Polymerization Of Cyclic Esters And The Coordination-Insertion Polymerization Of Olefins, Alicia Doerr

Doctoral Dissertations

Over the past few decades, interest in the design and synthesis of tailorable polymeric materials has grown due to the well documented correlation between structure, property, and function. However, in order to obtain polymers with desired microstructures, well controlled synthetic methods are needed. Therefore, the continued investigation of homogeneous, single-site polymerization catalysts is important to gain a deeper understanding of how systematic modifications of polymerization conditions, ligand scaffold, metal center identity, cocatalyst or activator identity, etc. affect the catalytic activity, selectivity, and/or polymer topology obtained when using these catalysts for the polymerization of a variety of monomers. This dissertation will …


Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu Jul 2021

Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu

Doctoral Dissertations

Inspired by nature, this research focuses on designing multifunctional renewable nanocomposites with high toughness and stimuli-responsiveness. In recent years, cellulose nanocrystals (CNCs) have been explored due to their abundance, renewable resource, and unique mechanical strength and structural coloration. CNCs naturally self-assemble into the helicoidal (Bouligand) structure that effectively endure high impacts but is brittle without an attendant soft phase. A thermoresponsive polymer, poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), was incorporated into CNCs via evaporation-induced self-assembly to improve toughness of the resulting nanocomposites and to study responses in polymer dynamics under varying temperature and humidity conditions. To study microscopic …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury May 2021

Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury

Doctoral Dissertations

Understanding the effect of the functional groups at the terminus of the side chains is important for developing conjugated polymers through side chain engineering. Nucleobases, which are known for their multi-functionality, have not been deeply studied as functionality in conjugated polymers due to synthetic challenges. The overarching goal of my dissertation is to design, synthesize, characterize conjugated polymers bearing nucleobase functionality in their side chains and demonstrate their utility in various applications. Stille cross-coupling and direct arylation polymerization are used to synthesize adenine- and thymine-containing conjugated polymers. Monomer design requirements for successful polymerization are studied and conditions that optimize polymerization …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng Apr 2021

Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng

Doctoral Dissertations

Electrospun fibers are high-surface-area materials widely used in applications ranging from batteries to wound dressings. Typically, an electrospinning precursor solution is prepared by dissolving a high-molecular-weight polymer in an organic solvent to form a sufficiently entangled solution. Our approach bypasses the requirement for entanglements and completely avoids toxic chemicals by focusing on using an aqueous complex coacervates solution. Coacervates are a dense, polymer-rich liquid phase resulting from the associative electrostatic complexation of oppositely charged macroions. We were the first to demonstrate that liquid complex coacervates could be successfully electrospun into polyelectrolyte complex (PEC) fibers. A canonical coacervate system was formed …


Development Of High-Performance Hydrogels, Buddhabhushan Salunkhe Jan 2021

Development Of High-Performance Hydrogels, Buddhabhushan Salunkhe

Doctoral Dissertations

Here, we present a systematic approach to design robust hydrogel compositions. The goal was to achieve excellent properties to open up new opportunities in especially two challenging applications not previously well-served by hydrogels.

The first part of this research will discuss the systematic screening of polymers for their hydrothermal stability under brine, acidic, neutral, and basic pH conditions followed by novel designs of hydrogel compositions. Certain hydrogel compositions withstand temperatures of up to 150 °C for more than 24 months in high salinity brines. This novel hydrogel composition fills a technology gap between the existing polyacrylamide-based preformed particle gels (PPGs) …