Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta Dec 2020

Engineering Stimuli-Responsive Polymeric Nanoassemblies: Rational Designs For Intracellular Delivery Of Biologics, Kingshuk Dutta

Doctoral Dissertations

Biologic drugs have gained enormous research attention in recent years as reflected by the development of multiple candidates to the clinical pipelines and an increased percentage of FDA approval. This is reasoned by the fact that biologics have been proven to deliver more predictive and promising benefits for many hard-to-cure diseases by ‘drugging the undruggable’ targets. However, the challenges associated with biologic drug development are multi-fold, viz, poor encapsulation efficacy, systemic instability, low cellular internalization and endosomal escape capability. Thus, it is essential to develop new molecular strategies that can not only address the associated drug delivery challenges, but also …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Providing Insight To Enable The Design Of Tailored, Nano-Structured Polymeric Surfaces And Interfaces, Onome J. Agori-Iwe Aug 2020

Providing Insight To Enable The Design Of Tailored, Nano-Structured Polymeric Surfaces And Interfaces, Onome J. Agori-Iwe

Doctoral Dissertations

Methods are presented for modifying polymeric material surfaces using: 1) selective surface segregation in binary branched/linear polymer blends, and 2) surface functionalization with polymer brushes. Using neutron reflectivity, elastic recoil detection, and other complementary techniques, the aim was to identify structure-property relationships and provide fundamental insight into the time evolution and formation of surfaces and interfaces in these materials.

In blends of poly(styrene) (PS) HyperMacs and DendriMacs in a linear deuterated PS (d-PS) matrix, smaller hyperbranched additives (<1E6 g/mol) move slower than their linear analogues. Larger (>1E6 g/mol) and less flexible hyperbranched additives with smaller fractal dimensions move faster than their linear analogues, suggesting that they are less …


Dually Responsive Shape-Changing Linear And Star Molecular Bottlebrushes With Bicomponent Side Chains, Ethan Wesley Kent Aug 2020

Dually Responsive Shape-Changing Linear And Star Molecular Bottlebrushes With Bicomponent Side Chains, Ethan Wesley Kent

Doctoral Dissertations

Molecular bottlebrushes (MBBs) can exhibit large conformational changes from wormlike to globular in solution in response to environmental stimuli. However, the instability of the collapsed state has prevented shape-changing MBBs from potential applications in, e.g., biomimetic catalysis and substance delivery. This dissertation work focused on dually responsive linear and star MBBs composed of bicomponent side chains in the form of either homografted diblock copolymer or binary heterografted polymeric side chains. When one polymer component collapsed, driving the shape changing of MBBs, another component served as a stabilizer. When both components in the side chains were stimuli-responsive, an additional level of …


Modulating Nanoparticle-Protein Interactions Through Covalent Or Noncovalent Approach For Biomedical Applications, Jingjing Gao Mar 2020

Modulating Nanoparticle-Protein Interactions Through Covalent Or Noncovalent Approach For Biomedical Applications, Jingjing Gao

Doctoral Dissertations

Discoveries at the interface of chemistry, biology, and materials science have emerged as a powerful route to impact life science in this century. My research in the Thayumanavan group is focused on problems at this interface. A common theme of all the six projects is the use of modern synthetic organic chemistry to build interesting, novel macromolecules which are chemically rich, to study the molecular self-assembly behavior in solution and then translate to solve problems in the biomedical area. By addressing the design challenge to prepare novel amphiphiles with desired functional groups, controlled molecular weight and the ability to respond …


Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole Mar 2020

Molecular Design Of Organic Semiconductors For Interfacial And Emissive Material Applications, Marcus David Cole

Doctoral Dissertations

This dissertation describes the synthesis and characterization of functional optoelectronically active materials. Synthetic techniques were used to prepare polymers containing perylene diimide (PDI) or tetraphenylethylene (TPE) moieties in the polymer backbone. PDI-based structures were prepared with embedded cationic or zwitterionic moieties intended to tailor organic/inorganic interfaces in thin film photovoltaic devices. The aggregation-induced emission (AIE)-active TPE polymers were synthesized to study how AIE properties evolve in π-conjugated polymers. The syntheses discussed here focused on modulation of molecular architecture to give rise to materials with tailored optoelectronic properties. Chapter 1 provides a brief overview of the field of organic electronics and …