Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Theses/Dissertations

2022

Institution
Keyword
Publication

Articles 1 - 30 of 36

Full-Text Articles in Chemistry

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow Dec 2022

The Effect Of Ionization Density In Applications Of Radiation Detection, Dosimetry, And Therapy, Daniel Mulrow

Arts & Sciences Electronic Theses and Dissertations

This dissertation covers a wide range of topics but is linked by the common theme of radiation interacting with materials and studying the result of those interactions. The introduction describes the fundamentals of how radiation interacts with material and how we are able to detect that radiation and the application of how we use those interactions in radiation oncology. The thesis starts with a chapter detailing the temperature dependence of the photophysics in two organic scintillators. This chapter is the foundation for a future study that will look the degree to which these scintillators can distinguish between gammas and neutrons …


Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen Dec 2022

Molecular Insights Into The Redox Of Atmospheric Mercury Through Laser Spectroscopy, Rongrong Wu Cohen

Theses and Dissertations

The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the …


First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed Dec 2022

First-Principles Study Of Doping Effects On Ferroelectricity And On Rashba Spin Splitting, Zegnet Yimer Muhammed

Graduate Theses and Dissertations

In this dissertation, we have thoroughly studied the effect of chemical and charge dopingon ferroelectrics (PbTiO3 and BaTiO3) and Rashba type semiconductor (BiTeI). In the first project, We investigate the polar instability and soft modes in electron-doped PbTiO3 using linear-response density functional calculations. Because, metallicity and ferroelectric-like polar distortion are mutually non-compatible, and their coexistence in the same system is an intriguing subject of fundamental interest in the field of structure phase transition. However, it is unclear what mechanism may extend the limit of metallicity that allows polar distortion. We find that ferroelectric instability can remarkably sustain up to an …


Turning Density Functional Theory Calculations Into Molecular Mechanics Simulations : Establishing The Fluctuating Density Model For Rna Nucleobases, Christopher A. Myers Dec 2022

Turning Density Functional Theory Calculations Into Molecular Mechanics Simulations : Establishing The Fluctuating Density Model For Rna Nucleobases, Christopher A. Myers

Legacy Theses & Dissertations (2009 - 2024)

Molecular mechanics (MD) simulations and density functional theory (DFT) have been the backbone of computational chemistry for decades. Due to its accuracy and computational feasibility, DFT has become the go-to method for theoretically predicting interaction energies, polarizability, and other electronic properties of small molecules at the quantum mechanical level. Although less fundamental than DFT, molecular mechanics (MM) algorithms have been just as influential in the fields of biology and chemistry, owing their success to the ability to compute measurable, macroscopic quantities for systems with tens of thousands to hundreds of thousands of atoms at a time. Nevertheless, MD simulations would …


Thermal Degradation Of Erythritol, Sudheendra Gamoji Nov 2022

Thermal Degradation Of Erythritol, Sudheendra Gamoji

Physics

The Insulated Solar Electric Cooker (ISEC) is a double walled Aluminum pot with a resistive heater directly connected to a solar panel whose goal is to create and disseminate cheap solar cookers in rural areas that primarily rely on biomass for cooking. Phase Change Materials (PCMs) like Erythritol, a sugar substitute, take a tremendous amount of energy to melt, and when they solidify they release the energy. Through the use of PCMs, the ISECs will produce enough heat to cook food even after the sun sets. However, PCMs like Erythritol degrade over repeated heat exposure, so the purpose of this …


Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Pressure-Induced Modifications To The Structural And Optoelectronic Properties Of 2d Hybrid Organic-Inorganic Perovskites, Jesse Ratte Sep 2022

Pressure-Induced Modifications To The Structural And Optoelectronic Properties Of 2d Hybrid Organic-Inorganic Perovskites, Jesse Ratte

Electronic Thesis and Dissertation Repository

Recently, 2D hybrid organic-inorganic perovskites (HOIP) have garnered lots of research interest for their applications in optoelectronic devices, especially in solar cells. The optoelectronic properties of 2D HOIPs have yet to be optimized for these applications. High external pressure is well known to induce structural modifications to 2D HOIPs, and thus modify their optoelectronic properties. Herein, we report a study of the effects of high pressure (HP) on the structures and optoelectronic properties of cyclohexane methylamine (CMA) lead iodide (CMA2PbI4) and the structures of N,N-dimethylphenylene-p-diammonium (DPDA) lead iodide (DPDAPbI4).

High pressure measurements of CMA2PbI4 were performed using Raman spectroscopy, Fourier-transform …


Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales Sep 2022

Engineering Rare-Earth Based Color Centers In Wide Bandgap Semiconductors For Quantum And Nanoscale Applications, Gabriel I. López-Morales

Dissertations, Theses, and Capstone Projects

For many years, atomic point-defects have been readily used to tune the bulk properties of solid-state crystalline materials, for instance, through the inclusion of elemental impurities (doping) during growth, or post-processing treatments such as ion bombardment or high-energy irradiation. Such atomic point-defects introduce local ‘incompatible’ chemical interactions with the periodic atomic arrangement that makes up the crystal, resulting for example in localized electronic states due to dangling bonds or excess of electrons. When present in sufficient concentrations, the defects interact collectively to alter the overall bulk properties of the host material. In the low concentration limit, however, point-defects can serve …


The Interaction Of Different Primary Producers And Physical And Chemical Dynamics Of An Urban Shallow Lake, Majid Sahin Sep 2022

The Interaction Of Different Primary Producers And Physical And Chemical Dynamics Of An Urban Shallow Lake, Majid Sahin

Dissertations, Theses, and Capstone Projects

An artificial urban shallow lake, Prospect Park Lake (PPL), is situated on a terminal moraine in Brooklyn New York, and supplied with municipal water treated with ortho-phosphates. The constant input of the phosphate nutrient is the primary source of eutrophication in the lake. The numerous pools along the water course houses various aquatic phototrophs, which influence the water quality and the state of the system, driving conditions into favoring the survival of their species. In the first half of the dissertation, the focus of the project is on analyzing how the different primary producers in different regions of PPL affect …


How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge Aug 2022

How Dynamic Bond Results In The Unique Viscoelastic Behavior Of The Associating Polymers, Sirui Ge

Doctoral Dissertations

Associating polymer is a special kind of polymer possessing transient reversible bonds in addition to the conventional covalent bonds. The reversible bonds provide unique dynamics and fascinating viscoelastic properties, resulting in attractive applications for these polymers, such as self-healing and shape memory materials. Despite many years of studies, the understanding of dynamics of polymers with reversible bonds, especially on molecular level, is still in the rudimentary stage, preventing the rational design of the potential novel functional materials based on associating polymers. In this dissertation, we provide a detailed and quantitative understanding of the dynamics and viscoelastic properties of associating polymers. …


Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore Aug 2022

Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore

Electrical & Computer Engineering Theses & Dissertations

Spin polarized photocathodes are necessary to examine parity violations and other fundamental phenomena in the field of high energy physics. To create these devices, expensive and complicated growth processes are necessary. While integral to accelerator physics, spin polarized electrons could have other exciting applications in materials science and other fields of physics. In order to explore these other applications feasibly, the relative supply of spin polarized photocathodes with a high rate of both polarization and photoemission needs to be increased. One such way to increase this supply is to develop the means to grow them faster and at a larger …


Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied Aug 2022

Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied

Graduate Theses and Dissertations

In the search for a sustainable method to meet increasing energy needs, solar energy emerges as an underutilized, plentiful resource. Solar intermittency and requirements for transportation necessitate storing solar energy in the form of chemical bonds via artificial photosynthesis. Photoelectrochemical (PEC) water splitting generates hydrogen fuel from solar energy and water. A semiconducting material that successfully meets the complex requirements for building an industrially scalable PEC device has yet to emerge. This is leading to a reevaluation of materials previously overlooked within PEC research, mainly materials with limitations such as minimal charge carrier mobility and propensity to corrosion under illumination …


Development Of Quantitative Methods To Study Pfas Using Proton Induced Gamma-Ray Emission, Colin Langton Jun 2022

Development Of Quantitative Methods To Study Pfas Using Proton Induced Gamma-Ray Emission, Colin Langton

Honors Theses

Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals that have become a major environmental concern. They can be found in a broad range of everyday products and pose a significant risk to the public due to their adverse health effects. They are persistent, bioaccumulate and do not break down in the environment. This project specifically aims to determine the concentration of Fluorine, a key identifier of PFAS, in environmental samples. To do this, we employ proton induced gamma-ray emission (PIGE) to screen for Fluorine within our samples. PIGE is performed at the Union College Ion Beam Analysis Laboratory using a …


Monitoring Bacteria Cultures Using Near Infrared (Nir) Binary Spectronephelometry (Bsn), Raman Spectra And Principal Component Analysis (Pca), Steven Ortiz May 2022

Monitoring Bacteria Cultures Using Near Infrared (Nir) Binary Spectronephelometry (Bsn), Raman Spectra And Principal Component Analysis (Pca), Steven Ortiz

Dissertations - ALL

Current noninvasive methods cannot continuously and simultaneously monitor the concentrations of cells and media components that define the state of native bacterial cultures, because of changing turbidity. A new technique, binary spectronephelometry (BSN) has the same or better sensitivity and precision for population monitoring as optical density at 600nm (OD600), while simultaneously measuring metabolic processes. The BSN algorithm uses laser induced emission to probe mildly turbid media i.e., propagation of light occurs in the single scattering regime. A BSN "training set" associates a grid of elastic emission measurements, comprising Rayleigh and Mie scattering, and inelastic emission measurements, comprising fluorescence and …


Transistion Metal Chalcogenides And Phosphides For Energy Storage And Conversion Through Water Splitting, Kelsey Thompson May 2022

Transistion Metal Chalcogenides And Phosphides For Energy Storage And Conversion Through Water Splitting, Kelsey Thompson

Electronic Theses & Dissertations

In contemporary society, there are many different ways that energy is used in daily life. From applications that require a high energy density to long-term storage in a stable manner, the requirements for energy usage are diverse. Therefore, the greater the number of uses a designed material exhibits, the more practical it may be for wide-scale manufacture. Two areas of particular interest for energy applications are fuel cells (to generate energy) and supercapacitors (to store energy). To provide cheaper and more durable alternatives for energy storage, electrodes containing CoMoO4, NiMoO4, CoMoS4, NiMoS4, …


Hepatocellular Carcinoma Image-Guided Intervention: Quantitative Characterization Of Reagents For Thermochemical Ablation, Emily A. Thompson May 2022

Hepatocellular Carcinoma Image-Guided Intervention: Quantitative Characterization Of Reagents For Thermochemical Ablation, Emily A. Thompson

Dissertations & Theses (Open Access)

Thermochemical ablation (TCA) is a minimally invasive therapy under development for hepatocellular carcinoma, a leading cause of cancer death worldwide. TCA utilizes acid-base chemistry delivered simultaneously to induce local ablation when administered. When delivered via a mixing catheter placed directly into the tumor, acid (e.g., AcOH) and base (e.g., NaOH) react to completion at the catheter tip, producing the acetate salt, water, and releasing heat (Δ>50°C) in sufficient quantities to induce lethal osmotic and thermal stress in tumor cells. However, these two reagents are not distinguishable from tissues with noninvasive imaging modalities, which makes monitoring the delivery of TCA …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


An Entropic Approach To Dynamics, Pedro Henrique Moreira Pessoa May 2022

An Entropic Approach To Dynamics, Pedro Henrique Moreira Pessoa

Legacy Theses & Dissertations (2009 - 2024)

The present thesis deals with different aspects of probability, the method of maximum entropy, information geometry, and dynamical systems and their applications to statistical physics and complex systems. Those topics come together in the framework for dynamics termed entropic dynamics. Work on the topic was initiated by my PhD advisor Professor Ariel Caticha and many colleagues at University at Albany as a method for explaining the dynamical processes in quantum mechanics from first principles of probability theory.


Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt May 2022

Design & Analysis Of Mixed-Mode Integrated Circuit For Pulse-Shape Discrimination, Bryan Orabutt

McKelvey School of Engineering Theses & Dissertations

In nuclear science experiments it is usually necessary to determine the type of radiation, its energy and direction with considerable accuracy. The detection of neutrons and discriminating them from gamma rays is particularly difficult. A popular method of doing so is to measure characteristics intrinsic to the pulse shape of each radiation type in order to perform pulse-shape discrimination (PSD).

Historically, PSD capable systems have been designed with two approaches in mind: specialized analog circuitry, or digital signal processing (DSP). In this work we propose a PSD capable circuit topology using techniques from both the analog and DSP domains. We …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath Mar 2022

Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath

LSU Doctoral Dissertations

The mechanisms of ambient-temperature reactions of heteroatomic compounds catalyzed by ceria (CeO2), an archetypical reducible oxide, for enzyme mimetics, environmental protection, and chemical synthesis are investigated in this dissertation using theoretical methods. CeO2 is modeled with thermodynamically stable low-index surfaces exposed by commonly studied ceria thin films and nano particles. To understand phosphatase-like dephosphorylation activity, stable adsorption states and surface reactions of model phosphates are examined. Binding of the central P-atom to surface lattice oxygen (Olatt) supplemented by phosphoryl O-Ce interaction is the only stable adsorption state for the un-dissociated molecule. Deprotonation of phosphate monoesters, …


Electron-Positron Annihilation Lifetime Spectroscopy Of Mgo And Aluminum-Doped Mgo, Elise Liebow Mar 2022

Electron-Positron Annihilation Lifetime Spectroscopy Of Mgo And Aluminum-Doped Mgo, Elise Liebow

Honors Theses

Radiation is a form of energy that can damage materials at an atomic level. This has implications for the mobility of radioactive waste through containment materials. We are characterizing atomic defects in materials by using Electron-Positron Annihilation Lifetime Spectroscopy (EPALS). When an electron and positron come into contact with each other, they annihilate and release two antiparallel 511-keV gamma rays. In a pristine crystalline sample, positrons can easily annihilate with electrons, but in a sample with vacancies/defects in the crystal structure, positrons take longer to annihilate. Therefore, the more vacancies in a sample, the longer the average lifetime of a …


Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad Feb 2022

Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad

Doctoral Dissertations

This thesis explores an experimental system probing the effect of energy input (in light-responsive bilayers) on membrane physicomechanical properties and dynamics of response to a trigger. We were inspired by the ability of cell membranes to alter their elastic and permeability properties and shape in response to energy input, change in lipid chemistry, or bilayer composition. Our work demonstrates and sheds new light on the roles of lipid chemical character, light-responsive moieties' incorporation in the membrane, and the lipid bilayer's mechanical properties on membrane response to chemical tuning or energy input. To observe how lipid chemistry affects membrane physical properties …


Atomistic Simulation Of Na+ And Cl- Ions Binding Mechanisms To Tobermorite 14Å As A Model For Alkali Activated Cements, Ahmed Abdelkawy Jan 2022

Atomistic Simulation Of Na+ And Cl- Ions Binding Mechanisms To Tobermorite 14Å As A Model For Alkali Activated Cements, Ahmed Abdelkawy

Theses and Dissertations

The production of ordinary Portland cement (OPC) is responsible for ~8% of all man-made CO2 emissions. Unfortunately, due to the continuous increase in the number of construction projects, and since virtually all projects depend on hardened cement from the hydration of OPC as the main binding material, the production of OPC is not expected to decrease. Alkali-activated cement produced from the alkaline activation of byproducts of industries, such as iron and coal industries, or processed clays represents a potential substitute for OPC. However, the interaction of the reaction products of AAC with corrosive ions from the environment, such as Cl-, …


Photophysics Of Metalloporphyrins Strongly Coupled To Cavity Photons, Aleksandr Avramenko Jan 2022

Photophysics Of Metalloporphyrins Strongly Coupled To Cavity Photons, Aleksandr Avramenko

Wayne State University Dissertations

This dissertation will discuss the photophysics of metalloporphyrins, mainly CuTPP, ZnTPP, and H2TPP under strong light-matter coupling conditions. Strong light-matter coupling was achieved by embedding the previously mentioned chromophores into a spun coated PMMA polymer coating which is then incorporated as a spacer layer in a FabryPérot nano-cavity. The cavity thickness is chosen so that the cavity photon is of similar energy as the B, or Soret transition (2nd excited state) of the porphyrin molecule. The exchange of energy between the cavity photon and the molecular mode leads to the formation of polariton states.

Increasing the concentration of the molecules …


Inhibitors Of Alpha-Synuclein Aggregation, Jemil Ahmed Jan 2022

Inhibitors Of Alpha-Synuclein Aggregation, Jemil Ahmed

Electronic Theses and Dissertations

Alpha-Synuclein (αS) – a neuronal, disordered, presynaptic protein – aggregates into amyloid fibrils and accumulates in the substantia nigra pars compacta of Parkinson's Disease (PD) patients. The aggregation and accumulation of αS amyloid fibrils leads to death of dopaminergic neurons; a hallmark of PD. Although it’s not clear why αS aggregates, prior studies have found that intrastriatal injection of fibril alone is sufficient to cause PD pathology in mouse and non-human primates models. These observations implicate αS as a therapeutic target against PD.

Unfortunately, there are three caveats when attempting to target αS. First, αS is a neuronal protein expressed …


การศึกษาปัจจัยที่ส่งผลต่อสมบัติของยางแผ่นรมควันเกรดพรีเมียม, สายสุณี จิตกล้า Jan 2022

การศึกษาปัจจัยที่ส่งผลต่อสมบัติของยางแผ่นรมควันเกรดพรีเมียม, สายสุณี จิตกล้า

Chulalongkorn University Theses and Dissertations (Chula ETD)

ถึงแม้ว่าสมบัติเชิงกลของยางแผ่นรมควันจะเหนือกว่ายางแห้งชนิดอื่นก็ตาม แต่ความไม่สม่ำเสมอในคุณภาพของยางส่งผลให้ปริมาณการใช้งานยางแผ่นรมควันในอุตสาหกรรมล้อยางลดลงอย่างต่อเนื่อง ปัจจุบันการยางแห่งประเทศไทยได้กำหนดมาตรฐานการผลิตยางแผ่นรมควันขึ้นเพื่อควบคุมและให้ได้ยางแผ่นรมควันที่มีสมบัติต่าง ๆ คงที่ ซึ่งยางที่ได้จะเรียกว่า “ยางแผ่นรมควันเกรดพรีเมียม” หรือ “ยางแผ่นรมควันเกรด P” เพื่อให้เข้าใจถึงสาเหตุที่ส่งผลให้สมบัติต่าง ๆ ของยางแผ่นรมควันแปรปรวนดียิ่งขึ้น งานวิจัยนี้ได้ศึกษาถึงอิทธิพลด้านภาวะการผลิต ช่วงฤดูกาลกรีดยาง รวมไปถึงพิ้นที่ปลูกยางต่อสมบัติทั้งทางกายภาพและเชิงกลของยางแผ่นรมควัน ผลการทดลองที่ได้พบว่า เมื่อใช้น้ำยางที่มีปริมาณเนื้อยางแห้งแตกต่างกันและใช้ความเข้มข้นกรดฟอร์มิกในการจับตัวเนื้อยางแตกต่างกัน สมบัติของยางแผ่นรมควันจะแตกต่างกันไป โดยพบว่าเมื่อปริมาณเนื้อยางแห้งและความเข้มข้นกรดฟอร์มิกเพิ่มขึ้นส่งผลให้ค่าสิ่งระเหยในยางแผ่นรมควันเพิ่มขึ้น เนื่องจากก้อนยางที่ได้จากการจับตัวของเนื้อยางด้วยกรดค่อนข้างแข็ง ทำให้เมื่อนำไปรีดเป็นแผ่นบางทำได้ยาก น้ำในเนื้อยางจึงระเหยออกมาได้ไม่ดี เมื่อเพิ่มปริมาณเนื้อยางแห้งจะทำให้ค่า PO, PRI และความหนืดมูนีเพิ่มขึ้น การแปรปริมาณเนื้อยางแห้งในน้ำยางจาก 20% (ภาวะใช้ในการผลิตยางแผ่นรมควันพรีเมียม) เป็น 18, 20 และ 25% โดยน้ำหนัก ส่งผลให้ความทนต่อแรงดึงของยางแตกต่างกันมากที่สุดอยู่ที่ 2.1 MPa การเพิ่มความเข้มข้นกรดฟอร์มิกจะส่งผลทำให้ค่า PO, PRI และความหนืดมูนีลดลง การแปรความเข้มข้นกรดฟอร์มิกจาก 4% (ภาวะที่ใช้ในการผลิตยางแผ่นรมควันเกรดพรีเมียม) เป็น 2, 3, 5, 8 และ 10% โดยปริมาตร ส่งผลให้ความทนต่อแรงดึงของยางแตกต่างกันมากที่สุดอยู่ที่ 3.2 MPa เมื่อพิจารณาฤดูกาลกรีดยางแตกต่างกัน น้ำยางที่ได้จากช่วงการผลัดใบของต้นยางจะมีปริมาณเนื้อยางแห้งในน้ำยางลดลง และปริมาณธาตุต่างๆ ในยางเพิ่มขึ้น ซึ่งจะส่งผลต่อค่าเถ้าและไนโตรเจนในยางแผ่นรมควันแตกต่างกัน ค่าความหนืดมูนีของยางแผ่นรมควันขึ้นอยู่กับช่วงฤดูกาลกรีดยางค่อนข้างชัดเจน โดยยางแผ่นรมควันที่เตรียมจากน้ำยางที่ได้จากการกรีดในช่วงกรีดปกติจะมีความหนืดมูนีที่สูงกว่ายางแผ่นรมควันที่เตรียมจากน้ำยางที่ได้จากการกรีดในช่วงก่อนปิดกรีด ยางแผ่นรมควันที่ได้จากภาคตะวันออกเฉียงเหนือมีปริมาณเถ้ามากกว่าที่ได้จากภาคใต้ ซึ่งปริมาณเถ้าเกิดจากปริมาณสารและแร่ธาตุต่าง ๆ ในดินที่ไม่เหมือนกัน อย่างไรก็ตาม ยางที่ได้จากทั้งสองบริเวณที่มีค่า PO , PRI และ ความหนืดมูนี ไม่ได้แตกต่างกันอย่างเห็นได้ชัด


Exploring The Photophysics Of Brown Carbon Chromophores Using Laser-Based Spectroscopy And Computational Methods, Megan Elizabeth Alfieri Jan 2022

Exploring The Photophysics Of Brown Carbon Chromophores Using Laser-Based Spectroscopy And Computational Methods, Megan Elizabeth Alfieri

Dissertations, Theses, and Masters Projects

Atmospheric aerosols are made up of suspended liquids and solids in the atmosphere. These aerosols play a very important role in the solar energy exchange in Earth’s atmosphere as well have dramatic impact on human health. Different aerosols have different effects on the atmosphere depending on the physical properties of the aerosols.

The purpose of this research project is to understand how the structure of molecular chromophores impacts the solar absorption properties of aerosols. We propose a series of laboratory studies to investigate the outcomes from solar absorption of brown carbon chromophores: 1-phenylpyrrole, 2-phenyl-1-H-pyrrole, 2-phenylimadazole, as well as water complexes. …


Heterogenous Reduction Of Co2 Over Boron-Rich Alb2, Jose C. Berger Jan 2022

Heterogenous Reduction Of Co2 Over Boron-Rich Alb2, Jose C. Berger

Honors Undergraduate Theses

Evidence suggests that the recent drastic changes in the global climate have been caused by greenhouse gases, especially CO­2. As a result, scientists are aiming to develop processes that either minimize the production of these gases or convert them into products of higher value. To that end, the catalytic properties of a two-dimensional boron-rich material were investigated. Herein is reported that such a material can reduce CO2 into benzene, C3 species, and C4 species at relatively low temperatures (225-450 ℃) and pressures (0.38 MPa). Current data suggest that a low-temperature induction period (e.g., 225 ℃) …


Electronic Structure Of Early Transition Metal Complexes Supported By Pyridine Polypyrrolide Ligands, Dylan Connor Leary Jan 2022

Electronic Structure Of Early Transition Metal Complexes Supported By Pyridine Polypyrrolide Ligands, Dylan Connor Leary

Graduate Theses, Dissertations, and Problem Reports

A thorough study of photoluminescent molecules involving the pyridine polypyrrole(ide) ligand platform has been conducted. A detailed analysis on speciation of the proligand H2(MesPDPPh) (H2MesPDPPh = 2,6-bis(5-mesityl-3-phenyl-1H-pyrrol-2-yl)-pyridine) and its dilithium salt Li2(MesPDPPh) revealed temperature- and solvent-dependent effects. These molecules, along with the hydrochloric acid adduct [H3(MesPDPPh)]Cl were found to exhibit short-lived photoluminescence in both tetrahydrofuran and benzene solution. These findings confirm the hypothesis that heavy-atom involvement is crucial for the favorable photophysical properties observed for the Zr(PDP)2 …