Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Theses/Dissertations

2016

Institution
Keyword
Publication

Articles 1 - 25 of 25

Full-Text Articles in Chemistry

Experimental Methods In Cryogenic Spectroscopy: Stark Effect Measurements In Substituted Myoglobin, Bradley Michael Moran Dec 2016

Experimental Methods In Cryogenic Spectroscopy: Stark Effect Measurements In Substituted Myoglobin, Bradley Michael Moran

Theses and Dissertations

Dawning from well-defined tertiary structure, the active regions of enzymatic proteins exist as specifically tailored electrostatic microenvironments capable of facilitating chemical interaction. The specific influence these charge distributions have on ligand binding dynamics, and their impact on specificity, reactivity, and biological functionality, have yet to be fully understood. A quantitative determination of these intrinsic fields would offer insight towards the mechanistic aspects of protein functionality. This work seeks to investigate the internal molecular electric fields that are present at the oxygen binding site of myoglobin.

Experiments are performed at 1 K on samples located within a glassy matrix, using the …


Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang Nov 2016

Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang

Doctoral Dissertations

Polymer-based semiconducting materials are promising candidates for large-scale, low-cost photovoltaic devices. To date, the efficiency of these devices has been low in part because of the challenge of optimizing molecular packing while also obtaining a bicontinuous structure with a characteristic length comparable to the exciton diffusion length of 10 to 20 nm. In this dissertation we developed an innovative evaporation-induced nanoparticle self-assembly technique, which could be an effective approach to fabricate uniform, densely packed, smooth thin films with cm-scale area from home-made P3HT nanoparticles. Unlike the previous reports of nanoparticle-based film formation, we use a mixture of two solvents so …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa Aug 2016

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa

Electronic Thesis and Dissertation Repository

The Kohn-Sham density functional theory relies on approximating the exchange-correlation energy functional or the corresponding potential. The behavior of the exchange-correlation potential as a function of position in a system can be used to detect and correct deficiencies of the parent functional. The too-fast decay of the potentials derived from common density functionals is a major problem, because it causes inaccurate Rydberg excitation energies and erroneous fractional charges in dissociating molecules. An efficient method to correct the shape of the exchange-correlation potential was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev. …


A Generalized Method For Fissile Material Characterization Using Short-Lived Fission Product Gamma Spectroscopy, Justin Richard Knowles Aug 2016

A Generalized Method For Fissile Material Characterization Using Short-Lived Fission Product Gamma Spectroscopy, Justin Richard Knowles

Doctoral Dissertations

Characterizing the fissile content of nuclear materials is of particular interest to the safeguards and nuclear forensics communities. Short-lived fission product gamma spectroscopy offers a significant reduction in analysis time and detection limits when compared to traditional non-destructive assay measurements. Through this work, a fully generalizable method that can be applied to variations in fissile compositions and neutron spectra was developed for the modeling and measurement of short-lived fission product gamma-rays. This method uses a 238-group neutron flux that was characterized for two pneumatic tube positions in the High Flux Isotope Reactor using flux monitor irradiations. This flux spectrum was …


Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold Aug 2016

Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold

Doctoral Dissertations

High energy proton spallation reactions on natural thorium metal targets have been utilized to produce multi mCi [milliCurie] quantities of Actinium-225. Theoretical cross sections for actinium and thorium isotopes as well as for a select number of the fission products produced in these reactions were generated by the Monte Carlo radiation transport code PHITS to simulate the experimental data obtained from sixteen irradiations of thorium metal targets with 25-210 µA [microampere] proton beams ranging in energies from 77 to 192 MeV. Irradiations were conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing …


Structural Behavior Of Nbsexte2-X Superconductors Under High Pressure, Vahe Mkrtchyan Aug 2016

Structural Behavior Of Nbsexte2-X Superconductors Under High Pressure, Vahe Mkrtchyan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Niobium chalcogenide compounds have recently gained a great deal of interest due to the fact that a superconducting phase coexists with the charge density wave state (CDW), as well as their potential for numerous applications. Two superconducting compositions, NbSexTe2-x (x=2, 1.5) were prepared by solid state route using high purity Nb, Se, and Te powders. Powder X-ray diffraction patterns collected at ambient conditions for NbSe2 and NbSe1.5Te0.5 showed a single phase with hexagonal crystal structure, with space group P63mmc. High-pressure X-ray diffraction measurements were performed at the Advanced Photon Source at Argonne National Laboratory to investigate structural stability up to …


Forcing Cesium Into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry At Extreme Conditions, Daniel Thomas Sneed Aug 2016

Forcing Cesium Into Higher Oxidation States Via Useful Hard X-Ray Induced Chemistry At Extreme Conditions, Daniel Thomas Sneed

UNLV Theses, Dissertations, Professional Papers, and Capstones

Recent theoretical work published in Nature Chemistry postulates the existence of cesium in high oxidation states when bonding with fluorine. It is thus predicted to behave as a p-block element (such as xenon) at pressures above 5 GPa. At these pressures, fluorine atoms may bond with the inner p-shell electrons forming CsFn, where n may vary from 2 up to 6; thus the oxidation state of Cs may change up to 6+. My research focused on physically synthesizing these compounds and to verify that, given the right conditions, bonding doesn't only occur with valence electrons, but with the inner p-shell …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood May 2016

Energy Transfer And Localization In Molecular Crystals, Mitchell A. Wood

Open Access Dissertations

With the aim of developing new technologies for the detection and defeat of energetic materials, this collection of work was focused on using simulations to characterize materials at extremes of temperature, pressure and radiation. Each branch of the work here is collected by which material response is potentially used as the detectable signal.

Where the chemical response is of interest, this work will explore the possibility of non-statistical chemical reactions in condensed-phase energetic materials via reactive molecular dynamics (MD) simulations. We characterize the response of three unique high energy density molecular crystals to different means of energy input: electric fields …


Variable Pathlength Cavity Spectroscopy Development Of An Automated Prototype, Ryan Schmeling May 2016

Variable Pathlength Cavity Spectroscopy Development Of An Automated Prototype, Ryan Schmeling

Theses and Dissertations

ABSTRACT

VARIABLE PATHLENGTH CAVITY SPECTROSCOPY

DEVELOPMENT OF AN AUTOMATED PROTOTYPE

by

Ryan Andrew Schmeling

The University of Wisconsin-Milwaukee, 2016

Under the Supervision of Professor Joseph H. Aldstadt III

Spectroscopy is the study of the interaction of electromagnetic radiation (EMR) with matter to probe the chemical and physical properties of atoms and molecules. The primary types of analytical spectroscopy are absorption, emission, and scattering methods. Absorption spectroscopy can quantitatively determine the chemical concentration of a given species in a sample by the relationship described by Beer’s Law. Upon inspection of Beer’s Law, it becomes apparent that for a given analyte concentration, …


Electrospun Nanofibers Of Metal Oxides For Energy Storage Applications, Sara Alkhalaf May 2016

Electrospun Nanofibers Of Metal Oxides For Energy Storage Applications, Sara Alkhalaf

Electronic Theses & Dissertations

Super capacitors are considered the most prominent and efficient energy storage devices, next to lithium ion batteries due to their high power densities, fast charge-discharge capabilities and long cyclibility. Super capacitors possess high power density in comparison to batteries and these are able to solve the increasing demand for energy in small consumer products, electrical vehicles and devices where quick power delivery is highly desired. Super capacitors are classified into two categories based on their charge storage mechanism. The first group capacitors are called electrical double-layer capacitors (EDLCs), where the charge is stored at the interface. The second group is …


Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor Feb 2016

Ultrafast Spectroscopy And Energy Transfer In An Organic/Inorganic Composite Of Zinc Oxide And Graphite Oxide, Jeff A. Secor

Dissertations, Theses, and Capstone Projects

The energy transfers and nature of defect levels of an organic/inorganic composite of Zinc Oxide and Graphite are studied with multidimensional spectroscopy. The edge and surface states of each composite are uncovered using excitation emission experiments showing which defect states are mediating the energy transfer from the metal oxide to the graphite oxide. Multidimensional time resolved spectroscopy further describes the effect of the carbon phase on the energy transfer pathways in the material.


How Geometric Distortions Scatter Electronic Excitations In Conjugated Macromolecules: Towards Photoinduced Relaxation And Energy Transfer, Tian Shi Jan 2016

How Geometric Distortions Scatter Electronic Excitations In Conjugated Macromolecules: Towards Photoinduced Relaxation And Energy Transfer, Tian Shi

Wayne State University Dissertations

The exciton scattering (ES) approach has been developed to study electronic excitations in large branched conjugated molecules. It attributes excited states to standing waves in the quasi-one-dimensional system by assuming a quasi-particle picture of optical excitations. Tight binding models extend capability of the ES approach to investigate the exciton-phonon coupling.

The topological counting method plays a substantial role in constructing tight binding models. It depicts the ES equations as a topological intersection problem. Then, by applying the index theorem, we can get the total number of excited states, which is equal to the number of repeat units plus topological charges …


Two-Photon Excitation Based Photochemistry And Neural Imaging, Kevin Andrew Hatch Jan 2016

Two-Photon Excitation Based Photochemistry And Neural Imaging, Kevin Andrew Hatch

Open Access Theses & Dissertations

Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, …


The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves Jan 2016

The Dawn Of New Quantum Dots: Synthesis And Characterization Of Ge1-Xsnx Nanocrystals For Tunable Bandgaps., Richard J. Esteves

Theses and Dissertations

Ge1-xSnx alloys are among a small class of benign semiconductors with composition tunable bandgaps in the near-infrared spectrum. As the amount of Sn is increased the band energy decreases and a transition from indirect to direct band structure occurs. Hence, they are prime candidates for fabrication of Si-compatible electronic and photonic devices, field effect transistors, and novel charge storage device applications. Success has been achieved with the growth of Ge1-xSnx thin film alloys with Sn compositions up to 34%. However, the synthesis of nanocrystalline alloys has proven difficult due to larger discrepancies (~14%) in …


Drying Methods For The Fabrication Of Polymer Foam Material, Dalton Echard Jan 2016

Drying Methods For The Fabrication Of Polymer Foam Material, Dalton Echard

Theses and Dissertations

This is a report on the study of the drying of nanoporous polymer foam material fabricated by photolithogtaphic methods. Three drying methods were employed, which were air drying, supercritical drying and freeze drying. After fabrication and drying, physical properties of the polymer foams were measured. These measurements included density of the material, Young’s modulus, surface area, and the shape of the skeletal particles. The measurements determined the effect of the polymer concentration and the effect of drying methods. It was determined that polymer concentration had a much larger effect on the properties of the materials than the drying method.


Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford Jan 2016

Non-Conventional Approaches To Syntheses Of Ferromagnetic Nanomaterials, Dustin M. Clifford

Theses and Dissertations

The work of this dissertation is centered on two non-conventional synthetic approaches to ferromagnetic nanomaterials: high-throughput experimentation (HTE) (polyol process) and continuous flow (CF) synthesis (aqueous reduction and the polyol process). HTE was performed to investigate phase control between FexCo1-x and Co3-xFexOy. Exploration of synthesis limitations based on magnetic properties was achieved by reproducing Ms=210 emu/g. Morphological control of FexCo1-x alloy was achieved by formation of linear chains using an Hext. The final study of the FexCo1-x chains used DoE to …


Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades Jan 2016

Electronic Structure And Stability Of Ligated Superatoms And Bimetallic Clusters, William H. Blades

Theses and Dissertations

Quantum confinement in small metal clusters leads to a bunching of states into electronic shells reminiscent of shells in atoms. The addition of ligands can tune the valence electron count and electron distribution in metal clusters. A combined experimental and theoretical study of the reactivity of methanol with AlnIm clusters reveals that ligands can enhance the stability of clusters. In some cases the electronegative ligand may perturb the charge density of the metallic core generating active sites that can lead to the etching of the cluster. Also, an investigation is conducted to understand how the bonding …


Excitonic States In Crystalline Organic Semiconductors: A Condensed Matter Approach, Lane Wright Manning Jan 2016

Excitonic States In Crystalline Organic Semiconductors: A Condensed Matter Approach, Lane Wright Manning

Graduate College Dissertations and Theses

In this work, a new condensed matter approach to the study of excitons based on crystalline thin films of the organic molecule phthalocyanine is introduced. The premise is inspired by a wealth of studies in inorganic semiconductor ternary alloys (such as AlGaN, InGaN, SiGe) where tuning compositional disorder can result in exciton localization by alloy potential fluctuations. Comprehensive absorption, luminescence, linear dichroism and electron radiative lifetime studies were performed on both pure and alloy samples of metal-free octabutoxy-phthalocyanine and transition metal octabutoxy-phthalocyanines, where the metal is Mn, Co, Ni, and Cu. Varying the ratios of the metal to metal-free phthalocyanines …


Biolabeling Through The Use Of Water-Soluble Colloidal Quantum Dots, Cody Stombaugh Jan 2016

Biolabeling Through The Use Of Water-Soluble Colloidal Quantum Dots, Cody Stombaugh

Honors Projects

Nanomaterials continues to be a growing field of study due to their wide range of potential applications. Quantum dots are artificially synthesized crystalline clusters of atoms able to confine electron motion as a result of their incredibly small size. Recently, medical applications of nanomaterials have expanded greatly. Quantum dots are ideal for biolabeling due to their rather narrow photoluminescence emission peaks. By synthesizing quantum dots of a specific diameter, it is possible to predetermine the peak photoluminescence wavelength of a sample. Through ligand exchange and immunoconjugation of the quantum dots with proteins, it is possible to use the quantum dots …


Plasma Temperature Measurements In The Context Of Spectral Interference, Brandon Seesahai Jan 2016

Plasma Temperature Measurements In The Context Of Spectral Interference, Brandon Seesahai

Honors Undergraduate Theses

The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not …


Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan Jan 2016

Understanding Electrical Conduction In Lithium Ion Batteries Through Multi-Scale Modeling, Jie Pan

Theses and Dissertations--Chemical and Materials Engineering

Silicon (Si) has been considered as a promising negative electrode material for lithium ion batteries (LIBs) because of its high theoretical capacity, low discharge voltage, and low cost. However, the utilization of Si electrode has been hampered by problems such as slow ionic transport, large stress/strain generation, and unstable solid electrolyte interphase (SEI). These problems severely influence the performance and cycle life of Si electrodes. In general, ionic conduction determines the rate performance of the electrode, while electron leakage through the SEI causes electrolyte decomposition and, thus, causes capacity loss. The goal of this thesis research is to design Si …


Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji Jan 2016

Fabricating Superhydrophobic And Superoleophobic Surfaces With Multiscale Roughness Using Airbrush And Electrospray, Karam N. Almilaji

Theses and Dissertations

Examples of superhydrophobic surfaces found in nature such as self-cleaning property of lotus leaf and walking on water ability of water strider have led to an extensive investigation in this area over the past few decades. When a water droplet rests on a textured surface, it may either form a liquid-solid-vapor composite interface by which the liquid droplet partially sits on air pockets or it may wet the surface in which the water replaces the trapped air depending on the surface roughness and the surface chemistry. Super water repellent surfaces have numerous applications in our daily life such as drag …


Towards An Understanding Of Pharmacologically Induced Intracellular Changes In Nicotinic Acetylcholine Receptors: A Fluorescence Microscopy Approach, Ashley M. Loe Jan 2016

Towards An Understanding Of Pharmacologically Induced Intracellular Changes In Nicotinic Acetylcholine Receptors: A Fluorescence Microscopy Approach, Ashley M. Loe

Theses and Dissertations--Chemistry

Upregulation of nicotinic acetylcholine receptors (nAChRs) is a well-documented response to chronic nicotine exposure. Nicotinic acetylcholine receptors are pentameric ligand-gated ion channels consisting of alpha (α2-10) and beta (β2-4) subunits. Nicotine, an agonist of nAChRs, alters trafficking and assembly of some subtypes of nAChRs, leading to an increase in expression of high sensitivity receptors on the plasma membrane. These physiological changes in nAChRs are believed to contribute to nicotine addiction, although the mechanism of these processes has not been resolved. Recently, many studies have converged on the idea that nicotine induces upregulation by an intracellular mechanism. In this dissertation, expression …