Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Data-Driven Approaches To Complex Materials: Applications To Amorphous Solids, Dil Kumar Limbu May 2021

Data-Driven Approaches To Complex Materials: Applications To Amorphous Solids, Dil Kumar Limbu

Dissertations

While conventional approaches to materials modeling made significant contributions and advanced our understanding of materials properties in the past decades, these approaches often cannot be applied to disordered materials (e.g., glasses) for which accurate total-energy functionals or forces are either not available or it is infeasible to employ due to computational complexities associated with modeling disordered solids in the absence of translational symmetry. In this dissertation, a number of information-driven probabilistic methods were developed for the structural determination of a range of materials including disordered solids to transition metal clusters. The ground-state structures of transition-metal clusters of iron, nickel, and …


The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu Dec 2020

The Aging And Impacts Of Atmospheric Soot: Closing The Gap Between Experiments And Models, Ogochukwu Yvonne Enekwizu

Dissertations

The main goal of this dissertation is to generate data and parameterizations to accurately represent soot aerosols in atmospheric models. Soot from incomplete combustion of fossil fuels and biomass burning is a major air pollutant and a significant contributor to climate warming. The environmental impacts of soot are strongly dependent on the particle morphology and mixing state, which evolve continuously during atmospheric transport via a process known as aging. To make predictions of soot impacts on the environment, most atmospheric models adopt simplifications of particle structure and mixing state, which lead to substantial uncertainties. Using an experimentally constrained modeling approach, …


Embedded Gold Nanoparticles For Metal Enhanced Photoluminescence, Hasna Alali Aug 2020

Embedded Gold Nanoparticles For Metal Enhanced Photoluminescence, Hasna Alali

Dissertations

Noble metal nanoparticles (MNPs) have attracted great attention in electronics, solar cells and catalysis. Their unique optical properties and biocompatibility makes them useful in biological applications like imaging, drug delivery, therapy and diagnostic. At the surface of MNPs the collective oscillation of free electrons resonates with a particular wavelength of incident light, generating the Localized Surface Plasmons Resonance (LSPR). LSPR results in absorption and scattering of incident light. Scattering results in reflecting photons and absorption leads to enhanced photoluminescence and quenching of fluorophores, if the fluorophore is in the vicinity of MNPs.

Most of the studies in this regard have …


High Resolution Near-Infrared/Visible Intracavity Laser Spectroscopy Of Small Molecules, Jack Harms Apr 2019

High Resolution Near-Infrared/Visible Intracavity Laser Spectroscopy Of Small Molecules, Jack Harms

Dissertations

Intracavity laser spectroscopy has been used to study the electronic structure of several small molecules. The molecules studied as part of this dissertation include germanium hydride (GeH), copper oxide (CuO), nickel chloride (NiCl), platinum fluoride (PtF), platinum chloride (PtCl), and copper hydroxide (CuOH). This work encompasses five peer-reviewed publications and two submitted manuscripts.


Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr Mar 2018

Functionalized Nanoporous Carbon Scaffolds For Hydrogen Storage Applications, Christopher Carr

Dissertations

Recent efforts have demonstrated confinement in porous scaffolds at the nanoscale can alter the hydrogen sorption properties of metal hydrides, though not to an extent feasible for use in onboard hydrogen storage applications, proposing the need for a method allowing further modifications. The work presented here explores how the functionalization of nanoporous carbon scaffold surfaces with heteroatoms can modify the hydrogen sorption properties of confined metal hydrides in relation to non-functionalized scaffolds (FS). Investigations of nanoconfined LiBH4and NaAlH4indicate functionalizing the carbon scaffold surface with nitrogen can shift the activation energy of hydrogen desorption in excess of …


Hydrogen Bond-Mediated Structural Order In Hydroxylated Bis-Mpa Dendritic Polymers: Experimental And Molecular Dynamics Simulation Study, Maliha N. Syed Dec 2015

Hydrogen Bond-Mediated Structural Order In Hydroxylated Bis-Mpa Dendritic Polymers: Experimental And Molecular Dynamics Simulation Study, Maliha N. Syed

Dissertations

Dendritic architectures are echoed throughout nature. While the significance of these pervasive patterns is not entirely clear, connections between their structures and physical properties are fascinating to contemplate. Particular interest has been paid to a family of synthetically manufactured and commercially available dendritic polymers based on 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) as a monomer. Composed of two hydroxyls and a carboxyl group, bis-MPA based structures hydrogen bond (H-bond) profusely. Given the high concentration and unique spatial orientation of end-groups, as well as the multitude of carbonyl, ester, and ether interior H-bond acceptors, a set of distinct H-bond organizations may be observed …