Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 30

Full-Text Articles in Chemistry

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber Mar 2022

Synthesis, Fabrication, And Assembly Of Mesoscale Polymer Filaments, Dylan M. Barber

Doctoral Dissertations

Mesoscale materials, with feature sizes in the range of one hundred nanometers to tens of micrometers, are ubiquitous in Nature. In organisms, mesoscale building blocks connect the properties of underlying molecular and nanoscructures to those of macroscale, organism-scale materials through hierarchical assemblies of recurring structural motifs. The collective action of large numbers of mesoscale features can afford stunning features like the structural color of the morpho butterfly wing, calcium ion-mediated movement in muscle, and wood structures like xylem that can support enormous external compressive loads and negative internal pressure to transport nutrients throughout an organism. In synthetic systems, the design, …


Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad Feb 2022

Manipulating The Properties Of Light-Responsive Active Lipid Bilayer Membranes: Measuring Mechanics And Probing Mechanisms, Arash Manafirad

Doctoral Dissertations

This thesis explores an experimental system probing the effect of energy input (in light-responsive bilayers) on membrane physicomechanical properties and dynamics of response to a trigger. We were inspired by the ability of cell membranes to alter their elastic and permeability properties and shape in response to energy input, change in lipid chemistry, or bilayer composition. Our work demonstrates and sheds new light on the roles of lipid chemical character, light-responsive moieties' incorporation in the membrane, and the lipid bilayer's mechanical properties on membrane response to chemical tuning or energy input. To observe how lipid chemistry affects membrane physical properties …


A Synergistic Anti-Diabetic Effect By Ginsenosides Rb1 And Rg3 Through Adipogenic And Insulin Signaling Pathways In 3t3-L1 Cells, Hee-Do Hong, Sun-Il Choi, Ok-Hwan Lee, Young-Cheul Kim Jan 2021

A Synergistic Anti-Diabetic Effect By Ginsenosides Rb1 And Rg3 Through Adipogenic And Insulin Signaling Pathways In 3t3-L1 Cells, Hee-Do Hong, Sun-Il Choi, Ok-Hwan Lee, Young-Cheul Kim

Nutrition Department Faculty Publication Series

Although ginsenosides Rb1 and Rg3 have been identified as the significant ginsenosides found in red ginseng that confer anti-diabetic actions, it is unclear whether insulin-sensitizing effects are mediated by the individual compounds or by their combination. To determine the effect of ginsenosides Rb1 and Rg3 on adipocyte differentiation, 3T3-L1 preadipocytes were induced to differentiate the standard hormonal inducers in the absence or presence of ginsenosides Rb1 or Rg3. Additionally, we determined the effects of Rb1, Rg3, or their combination on the expression of genes related to adipocyte differentiation, adipogenic transcription factors, and the insulin signaling pathway in 3T3-L1 cells using …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida Oct 2019

Designing Ion-Containing Polymers With Controlled Structure And Dynamics, Joshua Enokida

Doctoral Dissertations

Ion-containing polymers are a unique class of materials for which strong electrostatic interactions dictate physical properties. By altering molecular parameters, such as the backbone chemical structure, the ion content, and the ion-pair identity, the structure and dynamics of these polymers can be altered. Further investigation of the molecular parameters that govern their structure-property relationships is critical for the future development of these polymeric materials. Particularly, the incorporation of ammonium-based counterions into these polymers offers a facile method to tune their electrostatic interactions and hydrophobicity. Applying this concept, a bulky dimethyloctylammonium (DMOA) counterion was used to modify the organic solubility of …


Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca Jul 2019

Reactive And Stimuli-Responsive Sulfonium-Based Polymer Zwitterions, Cristiam Santa Chalarca

Doctoral Dissertations

This dissertation describes the synthesis and characterization of novel monomers and (co)polymer zwitterions that incorporate trialkylsulfonium cations. The novel materials presented herein constitute a unique type of polymer zwitterions that exhibit salt- and temperature-dependent water solubility as well as inherent reactivity. The behavior of these polymers in aqueous solutions, as nanostructures, and at liquid-liquid interfaces was studied; in all cases, the inherent reactivity of the polymers was harnessed towards the fabrication of novel polymers and soft materials. Following an introductory chapter, Chapter 2 describes the synthesis of sulfonium sulfonate monomers and polymer zwitterions. Both styrenic and methacrylic monomers were synthesized …


Combined Spectroscopic And Scanning Probe Studies Of Electronic Interactions In Nanostructured 1d And 2d Semiconductors, Peijian Wang Jul 2018

Combined Spectroscopic And Scanning Probe Studies Of Electronic Interactions In Nanostructured 1d And 2d Semiconductors, Peijian Wang

Doctoral Dissertations

This dissertation includes the exploration about the following research questions: 1. What is the correlation between the work function and ground state interactions in organic semiconductor assemblies? 2. How do non-covalent chemical doping tune the work function in MoS2? 3. Are there surface charges in the Aluminum doped ZnO nanocrystals (AZO) and what's the evolution of the surface charges and polarizabilities from undoped AZO to doped AZO? 4. How is the homogeneity like during doping in the organic thermoelectric materials? The techniques we employed in the research is the spatially registered Kelvin Probe Force Microscopy and Photoluminescence spectroscopy …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang Nov 2016

Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang

Doctoral Dissertations

Polymer-based semiconducting materials are promising candidates for large-scale, low-cost photovoltaic devices. To date, the efficiency of these devices has been low in part because of the challenge of optimizing molecular packing while also obtaining a bicontinuous structure with a characteristic length comparable to the exciton diffusion length of 10 to 20 nm. In this dissertation we developed an innovative evaporation-induced nanoparticle self-assembly technique, which could be an effective approach to fabricate uniform, densely packed, smooth thin films with cm-scale area from home-made P3HT nanoparticles. Unlike the previous reports of nanoparticle-based film formation, we use a mixture of two solvents so …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang Jul 2016

Synthesis And Characterization Of Polymeric Anion Exchange Membranes, Wenxu Zhang

Doctoral Dissertations

As alkaline anion exchange membrane fuel cells (AAEMFC) are regarded as promising and important energy devices, the development of high performance anion exchange membranes are in urgent need, as well as fundamental investigation on the structure-property relationship, which are the motivation of this dissertation. Three different polymer systems are presented and focused on polymer synthesis, material morphology, and ion transport phenomena. Crosslinked membranes are promising as practical materials, however, the understanding and further improvement of its performance is hindered by the lack of an ordered morphology or well-defined chemical structure. In Chapter 2, a series of crosslinked membranes were design …


Contact Angles And Contact Lines Around Particles At Isotropic And Anisotropic Liquid Interfaces, Nesrin Senbil Nov 2015

Contact Angles And Contact Lines Around Particles At Isotropic And Anisotropic Liquid Interfaces, Nesrin Senbil

Doctoral Dissertations

Liquid interfaces, capillarity and self-assembly of particles at interfaces are important in nature and technology. When a particle is adsorbed to a liquid interface, the contact line of the particle with the liquid interface and the associated contact angle are the crucial parameters that drive assembly of the particles. We looked at how the shape of the liquid interface and the shape of the particle affect the contact angle and the shape of the contact line. We used millimeter-sized PDMS-coated glass spheres and measured the contact angles at isotropic (planar) and anisotropic interfaces (saddle and cylindrical in shape). Anisotropy of …


Catalytic Methane Dissociative Chemisorption Over Pt(111): Surface Coverage Effects And Reaction Path Description, Inara Colon-Diaz Mar 2015

Catalytic Methane Dissociative Chemisorption Over Pt(111): Surface Coverage Effects And Reaction Path Description, Inara Colon-Diaz

Masters Theses

Density functional theory calculations were performed to study the dissociative chemisorption of methane over Pt(111) with the idea of finding the minimum energy path for the reaction and its dependence on surface coverage. Two approaches were used to evaluate this problem; first, we used different sizes of supercells (2x2, 3x3, 4x4) in order to decrease surface coverage in the absence of pre-adsorbed H and CH3 fragments to calculate the energy barriers of dissociation. The second approach uses a 4x4 unit cell and surface coverage is simulated by adding pre-absorbed H and CH3 fragments. Results for both approaches show …


Aggregation And Interfacial Behavior Of Charged Surfactants In Ionic Liquids, Lang Chen Mar 2015

Aggregation And Interfacial Behavior Of Charged Surfactants In Ionic Liquids, Lang Chen

Doctoral Dissertations

Room-temperature ionic liquids (ILs) exhibit a unique set of properties, leading to opportunities for numerous applications such as green solvents, batteries and lubricants. Their properties can be greatly tuned and controlled by addition of surfactants. It is therefore critical to obtain a better understanding of the aggregation and interfacial behavior of surfactants within ILs. Firstly, the phase diagram and aggregation isotherms of surfactants in several distinct ILs were investigated by solubility and tensiometry. A connection between solubility of the surfactant and the physical properties of the underlying ionic liquid was established. We found that the interfacial energy was crucial in …


Where To Buy Materials For The Activities, Morton Sternheim Jan 2015

Where To Buy Materials For The Activities, Morton Sternheim

Nanotechnology Teacher Summer Institutes

Sources for some of the less common materials used in the activities.


Seeing At The Nanoscale: New Microscopies For The Life Sciences, Jennifer Ross Jan 2015

Seeing At The Nanoscale: New Microscopies For The Life Sciences, Jennifer Ross

Nanotechnology Teacher Summer Institutes

Visualizing single modules with fluorescence microscopy


Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu Aug 2014

Morphology Characterization Of Low Band Gap Polymer-Based Organic Photovoltaics, Feng Liu

Doctoral Dissertations

In bulk heterojunction (BHJ) thin film organic photovoltaics (OPV), morphology control is critical to obtain good device efficiency. Nanoscale phase separation that creates bicontinuous interpenetrating structure on a size scale commensurate with exciton diffusion length (~10 nm) is thought to be the ideal morphology. Results obtained from this work indicate that morphology can be affected by chemical structure of the polymer, processing conditions, blending ratio and post treatments. Physical properties of the material, such as crystallinity, crystal orientation, material interactions and miscibility, surface energy and particle aggregations are critical for determining the morphology and thus the device performance. Previous investigations …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Optical And Scanning Probe Studies Of Isolated Poly (3-Hexylthiophene) Nanofibers, Mina Baghgarbostanabad Aug 2014

Optical And Scanning Probe Studies Of Isolated Poly (3-Hexylthiophene) Nanofibers, Mina Baghgarbostanabad

Doctoral Dissertations

Plastic electronics have an essential role in the future technologies owing to their compelling characteristics such as light weight, biocompatibity, low cost fabrication, and tunable optoelectronic properties. However, the performance of polymer-based devices strongly depends on the efficiency of exciton formation and dynamics that are themselves strongly sensitive to polymer molecular packing and structural order. Therefore, the current challenge in achieving high efficiency is establishing a correlation between molecular packing and exciton coupling. P3HT nanofibers represent an attractive platform for studying optical and electronic properties of exciton coupling because their nominal (highly crystalline) internal chain packing structure is known. A …


Evaluation Report, Alan Peterfreund Jan 2014

Evaluation Report, Alan Peterfreund

STEM Digital

This evaluation report synthesizes the results of evaluation activities conducted by SageFox Consulting Group of the STEM DIGITAL project led by the UMass STEM Ed Institute for its no-cost extension year, covering the period September 2013 to August 2014. The goals of the program are to facilitate the participants’ abilities to stimulate student interest in STEM careers while engaging them in ways to think critically about their environment. Participating teachers incorporated digital cameras and Analyzing Digital Images (ADI) software into lab activities focusing on environmental science. STEM DIGITAL materials focused on three strands related to (1) ozone and air quality, …


2013-2014 Newsletter, Morton Sternheim Jan 2014

2013-2014 Newsletter, Morton Sternheim

STEM Education Institute Newsletters

Patterns Workshop

iCons

New! MassBioEd Seminars

Arsenic: Citizen Science

STEM DIGITAL online

Nanotechnology


Measuring Lengths And Areas With Adi. Student Guide, Morton Sternheim Jan 2011

Measuring Lengths And Areas With Adi. Student Guide, Morton Sternheim

STEM Digital

No abstract provided.


Measuring The Acceleration Of Falling Objects, John Pickle Jan 2011

Measuring The Acceleration Of Falling Objects, John Pickle

STEM Digital

Earth's gravity pulls all objects toward its center, and near the Earth's surface. Objects in free fall accelerate at 9.8 m/s2 vertically downward, provided air resistance is negligible. This value of acceleration is often referred to as "g". There are many ways to measure this rate of acceleration, and most require a timing device. Typically, stopwatches are the least expensive technology, so these are commonly available in high school science classrooms. With the recent addition of movie cameras on cell phones and digital cameras, another timing tool is available at moderate cost (free if the school policy …


Analyzing Digital Images (Adi) Resources, Rob Snyder Jan 2011

Analyzing Digital Images (Adi) Resources, Rob Snyder

STEM Digital

Basic introduction to installing and using ADI


Water Treatment Experiments, David Reckhow Jan 2011

Water Treatment Experiments, David Reckhow

STEM Digital

•The water industry spends a lot of money and effort on removal of natural organic matter (NOM) from drinking waters •Problems with NOM (the more NOM the bigger problem) –NOM interferes with the ability of water treatment systems to remove substances that cause disease •Pathogenic organisms •Toxic chemicals –NOM reacts with chlorine‐based disinfectants forming carcinogenic organic byproducts


Experimental Design For Ozone Projects, Deborah Carlisle, Stephen Schneider Jan 2011

Experimental Design For Ozone Projects, Deborah Carlisle, Stephen Schneider

STEM Digital

No abstract provided.


Proposal Narrative, Morton Sternheim, Stephan Schneider Jan 2010

Proposal Narrative, Morton Sternheim, Stephan Schneider

STEM Digital

No abstract provided.


Abc's Of Dew (Adi) Software, John Pickle Jan 2009

Abc's Of Dew (Adi) Software, John Pickle

STEM Digital

Introduction to three color light, pixels, DEW (ADI) tools


Synthesize A Nanoscale Ferrofluid, Rob Snyder Jan 2007

Synthesize A Nanoscale Ferrofluid, Rob Snyder

Nanotechnology Teacher Summer Institutes

The chemical synthesis of a ferrofluid is a nanoscale science activity that originally appears in the Journal of Chemical Education. Access to the following website requires a subscription to the journal. J. Chem. Educ., 76, 943-948 (1999). The article was authored by Jonathan Breitzer and George Lisensky.