Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Chemistry

Reinvigorating A Technical Countering Weapons Of Mass Destruction Distance Learning Graduate Certificate Program, James C. Petrosky, Gaiven Varshney, Jeremy Slagley, Sara Shaghaghi Oct 2021

Reinvigorating A Technical Countering Weapons Of Mass Destruction Distance Learning Graduate Certificate Program, James C. Petrosky, Gaiven Varshney, Jeremy Slagley, Sara Shaghaghi

Faculty Publications

Current Countering Weapons of Mass Destruction (CWMD) demands can be divided broadly into policy and science. The science of chemical, biological, and radiological/nuclear weapons informs the limits of development, production, employment, operation, detection, risk characterization, human and material protection, and medical intervention. In short, the science of weapons of mass destruction (WMD) should precede and inform the development of policy. It is to this end that the Air Force Institute of Technology (AFIT) CWMD program was re-established, providing a technical educational option for practitioners to understand the science behind a very technically challenging subject.


3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim Dec 2020

3-D Fabry–Pérot Cavities Sculpted On Fiber Tips Using A Multiphoton Polymerization Process, Jonathan W. Smith, Jeremiah C. Williams, Joseph S. Suelzer, Nicholas G. Usechak, Hengky Chandrahalim

Faculty Publications

This paper presents 3-D Fabry–Pérot (FP) cavities fabricated directly onto cleaved ends of low-loss optical fibers by a two-photon polymerization (2PP) process. This fabrication technique is quick, simple, and inexpensive compared to planar microfabrication processes, which enables rapid prototyping and the ability to adapt to new requirements. These devices also utilize true 3-D design freedom, facilitating the realization of microscale optical elements with challenging geometries. Three different device types were fabricated and evaluated: an unreleased single-cavity device, a released dual-cavity device, and a released hemispherical mirror dual-cavity device. Each iteration improved the quality of the FP cavity's reflection spectrum. The …


Single-Reference Coupled Cluster Theory For Multi-Reference Problems, Johannes T. Margraf, Ajith Perera, Jesse J. Lutz, Rodney J. Bartlett Nov 2017

Single-Reference Coupled Cluster Theory For Multi-Reference Problems, Johannes T. Margraf, Ajith Perera, Jesse J. Lutz, Rodney J. Bartlett

Faculty Publications

Coupled cluster (CC) theory is widely accepted as the most accurate and generally applicable approach in quantum chemistry. CC calculations are usually performed with single Slater-determinant references, e.g., canonical Hartree-Fock (HF) wavefunctions, though any single determinant can be used. This is an attractive feature because typical CC calculations are straightforward to apply, as there is no potentially ambiguous user input required. On the other hand, there can be concern that CC approximations give unreliable results when the reference determinant provides a poor description of the system of interest, i.e., when the HF or any other single determinant ground state has …


Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan Jan 2015

Reconfigurable Solid-State Dye-Doped Polymer Ring Resonator Lasers, Hengky Chandrahalim, Xudong Fan

Faculty Publications

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G) and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 per pulse …


Remote Sensing Phase Fluorimetry Using Mercury Vapor Lamp, Matthew J. Bohn, Michael A. Lundin Mar 2012

Remote Sensing Phase Fluorimetry Using Mercury Vapor Lamp, Matthew J. Bohn, Michael A. Lundin

AFIT Patents

An efficient and portable method for remote detection of a target mineral material through frequency domain fluorimetry, a detection technique that measures the time lag between absorption and emission of photons, thereby determining the lifetime of said target mineral material. As claimed and disclosed in the present invention, mercury vapor lamps, a common source of industrial facility lighting, emit radiation that overlaps the UV/blue absorption spectrum of many fluorophores and may be used as an efficient and portable excitation source for remote frequency domain fluorimetry.