Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Electrochemical Scanning Tunneling Microscopy: Taking The Initial Stage Of Cu Electrodeposition On Au(111) As An Example, Zhuo Tan, Kai-Xuan Li, Bing-Wei Mao, Jia-Wei Yan Jul 2023

Electrochemical Scanning Tunneling Microscopy: Taking The Initial Stage Of Cu Electrodeposition On Au(111) As An Example, Zhuo Tan, Kai-Xuan Li, Bing-Wei Mao, Jia-Wei Yan

Journal of Electrochemistry

Electrochemical scanning tunneling microscopy (ECSTM) plays an important role in the field of electrochemistry, which can obtain potential-dependent structural information of electrode surface with high spatial resolution and observe some reaction processes in electrolyte solutions, and provide a powerful way to understand the interfacial structure and electrode processes from the perspective of high spatial resolution. In this article, the study of electrodeposition of Cu on Au (111) by ECSTM is taken as an example to introduce the experimental methods required for ECSTM and share our experience with other electrochemical groups. Firstly, the working principle of STM is introduced so that …


Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng Jul 2023

Band Alignments Of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics, Yong-Bin Zhuang, Jun Cheng

Journal of Electrochemistry

Band alignments of electrode-water interfaces are of crucial importance for understanding electrochemical interfaces. In the scenario of electrocatalysis, applied potentials are equivalent to the Fermi levels of metals in the electrochemical cells; in the scenario of photo(electro)catalysis, semiconducting oxides under illumination have chemical reactivities toward redox reactions if the redox potentials of the reactions straddle the conduction band minimums (CBMs) or valence band maximums (VBMs) of the oxides. Computational band alignments allow us to obtain the Fermi level of metals, as well as the CBM and VBM of semiconducting oxides with respect to reference electrodes. In this tutorial, we describe …


Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis May 2023

Carbon Dioxide Reduction On Large Area Liquid Metal Gallium-Indium Electrocatalysts, Thomas Hollis

Chemistry & Biochemistry Undergraduate Honors Theses

Carbon dioxide (CO2) is widely known as a greenhouse gas that contributes to global warming due to the burning of fossil fuels. The carbon dioxide reduction reaction (CO2RR) is widely studied to reutilize CO2 to useful products, including methane, ethane, and carbon monoxide. This project studies the use of liquid metal gallium-indium as an electrocatalyst to perform CO2 reduction to carbon monoxide (CO) or possibly solid carbon in various solutions. Gallium-indium is characterized and studied through its “wetting” properties and adhesion to substrate foil through the measurement of contact angles inside solution. These liquid …


Characterization Of Deposited Copper Oxide Films On Copper Substrates, Millicent Castillo Feb 2023

Characterization Of Deposited Copper Oxide Films On Copper Substrates, Millicent Castillo

Electronic Thesis and Dissertation Repository

The deposition of copper oxide films on copper substrates was investigated by the electrochemical, thermal, and hydrothermal oxidation of copper. The formed oxides were characterized using various surface analytical techniques to determine the film’s morphology, composition, and thickness. The results show that by growing oxides electrochemically, a duplex layer composing of CuO and Cu2O film was formed on the copper surface, having characteristics of being porous and possessing needle-like structures. An oxide film composed of CuO and Cu2O, which shows minimal porosity and possess mixtures of crystalline and non-crystalline structures, is formed on the copper surface …