Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Chemistry

Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih Dec 2021

Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih

Makara Journal of Science

Black cumin is commonly used as traditional medicine due to its wide range of pharmacological potential. Black cumin oil (BCO) was often prepared as nanoemulsion to improve its solubility, stability, and bioavailability. This study was conducted to investigate the molecular behavior as well as structural evolution of BCO-surfactant systems during self-assembly micellization using molecular dynamics (MD) simulations. Several BCO constituents and variations of surfactants were employed to model BCO-surfactant systems. 50 ns of MD simulations were performed to elucidate their evolution of structures and physicochemical properties during formation. Results showed that BCO-tween20 and BCO-lecithin were able to form spherical-shaped micelles …


Modeling Vitexin And Isovitexin Flavones As Corrosion Inhibitors For Aluminium Metal, Abdullahi Muhammad Ayuba, Umaru Umar Aug 2021

Modeling Vitexin And Isovitexin Flavones As Corrosion Inhibitors For Aluminium Metal, Abdullahi Muhammad Ayuba, Umaru Umar

Karbala International Journal of Modern Science

Theoretically, the aluminium corrosion inhibitive performance of vitexin (VTX) and isovitexin (SVT) were evaluated with a view of establishing the mechanism of the inhibition process. Calculations which include the consideration of several global descriptors were studied to describe and correlate the reactivity of the molecules with the computed descriptors. First and second-order condensed Fukui functions were employed to analyze local reactivity parameters, while simulations involving the adsorbed molecules on Al (1 1 0) surface were conducted through quench dynamic simulations and the mechanism of physical adsorption was established with SVT relatively been a better inhibitor on Al surface than VTX.


Computational Investigation Of Nanoparticle Immersion And Selfassembly, Tara Allison Tyler Nitka Aug 2021

Computational Investigation Of Nanoparticle Immersion And Selfassembly, Tara Allison Tyler Nitka

Open Access Theses & Dissertations

Both neutral and charged nanoparticles with a variety of compositions, shapes, and sizes have beenpreviously prepared. These nanoparticles have been demonstrated to self-assemble into a variety of superlattices and binary superlattices both in bulk solution and at surfaces of solutions, and the structures formed by self-assembly have been shown to depend on nanoparticle chemistry and charge as well as on whether assembly takes place at a surface or in bulk. Furthermore, the prepared isolated and self-assembled nanoparticles have a number of biomedical, nanotechnology, and industrial applications. In this Dissertation, I present my research on three general topics. First, I will …


Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li Jul 2021

Bridging The 12-6-4 Model And The Fluctuating Charge Model, Pengfei Li

Chemistry: Faculty Publications and Other Works

Metal ions play important roles in various biological systems. Molecular dynamics (MD) using classical force field has become a popular research tool to study biological systems at the atomic level. However, meaningful MD simulations require reliable models and parameters. Previously we showed that the 12-6 Lennard-Jones nonbonded model for ions could not reproduce the experimental hydration free energy (HFE) and ion-oxygen distance (IOD) values simultaneously when ion has a charge of +2 or higher. We discussed that this deficiency arises from the overlook of the ion-induced dipole interaction in the 12-6 model, and this term is proportional to 1/r …


The Effect Of The Apolipoprotein A1 (Apoa1): The Stability And Folding In Potassium Chloride Environment, Alexandra Paladian May 2021

The Effect Of The Apolipoprotein A1 (Apoa1): The Stability And Folding In Potassium Chloride Environment, Alexandra Paladian

Honors Theses

Healthy levels of potassium chloride (KCl) can significantly affect the workings of the cholesterol level of the human body and how they pertain to an individual person. The search for a better salt additive for the human diet can provide a better option for people who experience high cholesterol levels and heart disease. The study focuses on the experimental design of the Molecular Dynamic (MD) simulation of the Apolipoprotein A1 (APOA1) in the potassium ion solution environment to determine the stability and folding of the protein. The study also compares its data to the previous experimental design of chloride ions …


Molecular Dynamic Simulation Of The Complex Folding Patterns Of Apolipoprotein A1 In Various Concentrations Of Potassium Chloride, Hannah Holmberg May 2021

Molecular Dynamic Simulation Of The Complex Folding Patterns Of Apolipoprotein A1 In Various Concentrations Of Potassium Chloride, Hannah Holmberg

Honors Theses

Apopliprotein or ApoA-1 is a complex lipoprotein that functions in the removal of cholesterol from the blood, removing cholesterol from the area around white blood cells and promoting the excretion of lipids through the lymphatic system. Previous research has found that ApoA-1 shows both folded and unfolded conformations depending on the concentration of NaCl in solution in the water around it. The protein was studied using molecular dynamics simulations. Once this state of equilibrium was reached, various structural properties of the protein were measured including the radius of gyration and the radial distribution function. The goal of the project was …


Using Molecular Dynamics To Characterize The Relationship Between Membrane Components And Dynamics And Supramolecular Organization Of Membrane Proteins, Eric Sefah Jan 2021

Using Molecular Dynamics To Characterize The Relationship Between Membrane Components And Dynamics And Supramolecular Organization Of Membrane Proteins, Eric Sefah

Graduate Theses, Dissertations, and Problem Reports

Molecular dynamics (MD) simulations have gained impetus as a technique for elucidating structural and dynamical information about membrane proteins (MP). In particular, coarse-grained (CG) MD simulations have provided valuable information about the relationship between membrane components and supramolecular organization of MPs. In this work MD simulations are used to characterize the effects of hopanoids on bacterial membrane dynamics and association in a model protein proteorhodopsin (PR), as well as the role of the extended C-terminus of the human adenosine receptor (A2AR) on its dimerization. PR is found to dimerize in a manner that is dependent on both the …


Understanding The Relationship Between Local Environmental Changes And The Function Of The Ph Low Insertion Peptide, Violetta Burns Casamayor Jan 2021

Understanding The Relationship Between Local Environmental Changes And The Function Of The Ph Low Insertion Peptide, Violetta Burns Casamayor

Graduate Theses, Dissertations, and Problem Reports

Cancer is the second leading cause of death in the US with over 1.7 million new cases each year. Current cancer treatments tend to also target healthy tissues due to similarities with cancerous ones, resulting in acute side effects. Early detection is the best approach towards defeating cancer, however, modern imaging techniques require sizeable samples, often implying a late stage in the disease. One common attribute of tumors is their acidic microenvironment, which can be taken advantage of.

The pH Low Insertion Peptide (pHLIP) is a membrane-active peptide that can take advantage of the acidic microenvironment surrounding cancer cells. pHLIP …