Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

PDF

2020

Fuel cell

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang Oct 2020

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang

Journal of Electrochemistry

The alkaline polymer electrolyte fuel cell (APEFC) has made appreciable progress in recent years but is still suffering performance loss during discharge with air as the oxidant. Several theories have been suggested to interpret the loss. However, efforts are still needed to reach a clear quantitative understanding. Based on the major experimental findings in combination with thermodynamics and kinetics of the reactions involved in the anode, this paper presents a model featuring layered carbonization in the anode and relevant grouped equations. The simulation results generated from the latter are compared with experiments, and possible principles to suppress the performance loss …


Fundamentals Of Distribution Of Relaxation Times For Electrochemical Impedance Spectroscopy, Jia Wang, Qiu-An Huang, Wei-Heng Li, Juan Wang, Quan-Chao Zhuang, Jiu-Jun Zhang Oct 2020

Fundamentals Of Distribution Of Relaxation Times For Electrochemical Impedance Spectroscopy, Jia Wang, Qiu-An Huang, Wei-Heng Li, Juan Wang, Quan-Chao Zhuang, Jiu-Jun Zhang

Journal of Electrochemistry

Electrochemical impedance spectroscopy (EIS) is a powerful electrochemical characterization technology, which has been widely used in the field of electrochemical energy, such as lithium-ion batteries, supercapacitors, fuel cells, etc. Distribution of relaxation time (DRT) is an EIS deconvolution technique which does not depend on the prior knowledge of the targeted research object. Furthermore, DRT can serve to separate and analyze physical and chemical processes which are highly overlapped in their EIS data. In order to encourage the application and popularization of DRT deconvolution technology, several core questions are addressed in this paper: (1) DRT deconvolution principle, implementation steps and important …


Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing Aug 2020

Research Progress Of Metal-Nitrogen-Carbon Catalysts Toward Oxygen Reduction Reaction Inm Changchun Institute Of Applied Chemistry, Ming-Jun Xu, Jie Liu, Jun-Jie Ge, Chang-Peng Liu, Wei Xing

Journal of Electrochemistry

The development of highly active and stable catalysts toward oxygen reduction reaction (ORR) has been facing severe challenges. In recent years, pyrolytic M-N-C catalysts and metal-organic framework derived materials made the performance of non-noble metal catalysts greatly improved, however, the molecular and atomic level understanding in the reaction active sites and the mechanism are still lacking. Here, we summarize the recent research progress made in the Changchun Institute of Applied Chemistry. We present a microporous metal-organic-framework confined strategy toward the preferable formation of ORR catalysts. Firstly, we studied the active site and proposed a new active site structure for the …


Research Progresses In Polymeric Proton Exchange Membranes For Fuel Cells, Xu-Po Liu, Yun-Feng Zhang, Shao-Feng Deng, De-Li Wang, Han-Song Cheng Feb 2020

Research Progresses In Polymeric Proton Exchange Membranes For Fuel Cells, Xu-Po Liu, Yun-Feng Zhang, Shao-Feng Deng, De-Li Wang, Han-Song Cheng

Journal of Electrochemistry

Proton exchange membrane (PEM) is one of the key components in PEM fuel cells, which possesses the function of separating the cathode and anode, affording proton transport channels and preventing fuel permeability. The property of PEM significantly influences the performance and service life of fuel cells. Nowadays, the commercially used Nafion membranes have the shortcomings of serious fuel permeability, low proton conductivity at elevated temperature and high price, which limits the rapid development of PEM fuel cells. Therefore, it seems to be urgent to develop novel PEMs with low cost and good comprehensive properties. Polymeric proton exchange membrane is an …