Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

PDF

2012

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 160

Full-Text Articles in Chemistry

Electrocatalytic Activity Of Palladium Nanocatalysts Supported On Carbon Nanoparticles In Formic Acid Oxidation, Jie Huang, Zhiyou Zhou, Yang Song, Xiongwu Kang, Ke Liu, Wancheng Zhou, Shaowei Chen Dec 2012

Electrocatalytic Activity Of Palladium Nanocatalysts Supported On Carbon Nanoparticles In Formic Acid Oxidation, Jie Huang, Zhiyou Zhou, Yang Song, Xiongwu Kang, Ke Liu, Wancheng Zhou, Shaowei Chen

Journal of Electrochemistry

Palladium nanostructures were deposited onto carbon nanoparticle surface by a chemical reduction method. Transmission electron microscopic studies showed that whereas the resulting metal-carbon (Pd-CNP) nanocomposites exhibited a diameter of 20 to 30 nm, the metal components actually showed a cauliflower-like surface morphology that consisted of numerous smaller Pd nanoparticles (3 to 8 nm). Electrochemical studies showed that the effective surface area of the Pd-CNP nanoparticles was about 40% less than that of Pd black, possibly because the Pd nanoparticles were coated with a layer of carbon nanoparticles; yet, the Pd-CNP nanocomposites exhibited marked enhancement of the electrocatalytic activity in formic …


Advances And Challenges Of Intermediate Temperature Solid Oxide Fuel Cells: A Concise Review, Sanping Jiang Dec 2012

Advances And Challenges Of Intermediate Temperature Solid Oxide Fuel Cells: A Concise Review, Sanping Jiang

Journal of Electrochemistry

Fuel cell is an electrochemical energy conversion device to directly convert the chemical energy of fuels to electricity. Among all types of fuel cells, solid oxide fuel cells (SOFCs) operating at intermediate temperatures of 600~800 oC offer an attractive option that is much more fuel flexible than low temperature fuel cells such as proton exchange membrane fuel cells, and is suitable for a wide range of applications. However, two main challenges remain towards the commercial viability and acceptance of the SOFC technologies: the cost and durability. Both are critically dependent on the process, fabrication, performance, chemical and microstructural stability …


Ternary Alloy Electrocatalysts For Oxygen Reduction Reaction, Jin Luo, Lefu Yang, Binghui Chen, Chuanjian Zhong Dec 2012

Ternary Alloy Electrocatalysts For Oxygen Reduction Reaction, Jin Luo, Lefu Yang, Binghui Chen, Chuanjian Zhong

Journal of Electrochemistry

Proton exchange membrane fuel cell represents an important electrochemical energy conversion device with many attractive features in terms of efficiency of energy conversion and minimization of environmental pollution. However, the large overpotential for oxygen reduction reaction at the cathode and the low activity, poor durability and high cost of platinum-based catalysts in the fuel cells constitute a focal point of major barriers to the commercialization of fuel cells. The development of nanostructured catalysts shows promises to addresses some of the challenging problems. The ability to engineer the composition and nanostructure of nanoalloy catalysts is important for developing active, robust and …


Electrocatalytic Oxidation Of Formic Acid On Pd/Ni Heterostructured Catalyst, Mingjun Ren, Liangliang Zou, Ju Chen, Ting Yuan, Qinghong Huang, Haifeng Zhang, Hui Yang, Songlin Feng Dec 2012

Electrocatalytic Oxidation Of Formic Acid On Pd/Ni Heterostructured Catalyst, Mingjun Ren, Liangliang Zou, Ju Chen, Ting Yuan, Qinghong Huang, Haifeng Zhang, Hui Yang, Songlin Feng

Journal of Electrochemistry

A Pd/Ni bimetallic nanostructured electrocatalyst was fabricated via a two-step reduction route. Owing to an epitaxial growth of Pd atoms on the surface of Ni nanoparticles, heterostructured Pd/Ni nanocomposites were formed and verified by high resolution transmission electron microscopy combined with energy-dispersion X-ray spectroscopy. X-ray diffraction confirmed that the as-prepared Pd/Ni nanocomposites possessed a single face-centered-cubic (fcc) Pd structure, probably due to a weaker diffraction intensity of metallic Ni and/or overlapping by that of Pd. The intrinsic catalytic activity on the Pd/Ni is higher than that on the Pd. Moreover, the durability of formic acid oxidation on the Pd/Ni was …


Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong Dec 2012

Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong

Journal of Electrochemistry

Adsorbed sulfur is commonly considered as a reaction poison. However, small amounts of sulfur on platinum significantly increase the surface reactivity toward carbon monoxide (CO) electrooxidation. For the solution CO oxidation, the onset potential was shifted up to over 300 mV negative to that on S-free surface, and the extent of the negative potential shift increases with the sulfur coverage (Xs) up to about 0.6. The enhanced CO oxidation also depends on the solution pH. For the adsorbed CO, at low sulfur coverages (Xs < 0.3), the oxidation peak potential is about 40 mV negative to that of the corresponding clean Pt. However, at higher coverages, the peak potential is about 30 mV more positive. Surface-enhanced Raman spectra show that the adsorption of sulfur significantly redshifts the Pt-CO stretching frequency. These observations are explained by the weakening of the Pt-CO bond and the hindrance of CO diffusion by Sads.


Kinetic Study Of Photoelectrochemical Oxidation Of Lignin Model Compounds On Tio2 Nanotubes, Min Tian, Daniel Liba, Aicheng Chen Dec 2012

Kinetic Study Of Photoelectrochemical Oxidation Of Lignin Model Compounds On Tio2 Nanotubes, Min Tian, Daniel Liba, Aicheng Chen

Journal of Electrochemistry

In this study, TiO2 nanotubes were prepared via the electrochemical oxidation of titanium substrates in a non-aqueous electrolyte and their morphology and microstructures were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photoelectrochemical oxidation of two lignin model compounds, 1-(3,4-dimethoxyphenoxy)-2-(2-methoxyphenoxy)-1,3-propanediol (DMP) and 3-hydroxy-1-(3,4-dimethoxyphenoxy)-2-(2-methoxyphenoxy)-1,3-propanone (HDM), was investigated. A new band appeared at ~304 nm during the photoelectrochemical oxidation of DMP. The rate of DMP intermediate formation was amplified with the increase of initial concentrations, while it was diminished with increased temperature. Despite the similarity in structure between HDM and DMP, there are only small increases in absorbance …


Electrochemical Performance Of Screen-Printed Composite Coatings Of Conducting Polymers And Carbon Nanotubes On Titanium Bipolar Plates In Aqueous Asymmetrical Supercapacitors, Xiaohang Zhou, George Z. Chen Dec 2012

Electrochemical Performance Of Screen-Printed Composite Coatings Of Conducting Polymers And Carbon Nanotubes On Titanium Bipolar Plates In Aqueous Asymmetrical Supercapacitors, Xiaohang Zhou, George Z. Chen

Journal of Electrochemistry

Composites of conducting polymers (polypyrrole and polyaniline) with acid treated multi-walled carbon nanotubes were formulated into printable aqueous inks, with the aid of functional additives (benzethonium chloride as a surfactant with or without polyvinyl alcohol as a binder). The inks were screen-printed as fairly uniform coatings of various mass loading densities and areas (up to 75 mg cm-2 and 100 cm2) on thin titanium plates (0.1 mm in thickness). These screen-printed plates were used to fabricate both unit cell and multi-cell stack of asymmetrical supercapacitors with screen-printed negative electrodes of activated carbon (pigment black) in aqueous electrolytes …


Polymorphism And Polyamorphism In Bilayer Water Confined To Slit Nanopore Under High Pressure, Jaeil Bai, Xiao Cheng Zeng Dec 2012

Polymorphism And Polyamorphism In Bilayer Water Confined To Slit Nanopore Under High Pressure, Jaeil Bai, Xiao Cheng Zeng

Xiao Cheng Zeng Publications

A distinctive physical property of bulk water is its rich solid-state phase behavior, which includes 15 crystalline (ice I–ice XIV) and at least 3 glassy forms ofwater, namely, low-density amorphous, highdensity amorphous, and very-high-density amorphous (VHDA). Nanoscale confinement adds a new physical variable that can result in a wealth of new quasi-2D phases of ice and amorphous ice. Previous computer simulations have revealed that when water is confined between two flat hydrophobic plates about 7–9 Å apart, numerous bilayer (BL) ices (or polymorphs) can arise [e.g., BL-hexagonal ice (BL-ice I)]. Indeed, growth of the BL-ice I through vapor deposition on …


Ultra-Stable Protein-Polymer Bioconjugates, Kyle S. Cole Dec 2012

Ultra-Stable Protein-Polymer Bioconjugates, Kyle S. Cole

Master's Theses

No abstract provided.


Interactions Of Aqueous Ag+ With Fulvic Acids: Mechanisms Of Silver Nanoparticle Formation And Investigation Of Stability, Nathaniel F. Adegboyega, Virender K. Sharma, Karolina Siskova, Radek Zboril, Mary Sohn, Brian J. Schultz, Sarbajit Banerjee Dec 2012

Interactions Of Aqueous Ag+ With Fulvic Acids: Mechanisms Of Silver Nanoparticle Formation And Investigation Of Stability, Nathaniel F. Adegboyega, Virender K. Sharma, Karolina Siskova, Radek Zboril, Mary Sohn, Brian J. Schultz, Sarbajit Banerjee

Chemistry and Chemical Engineering Faculty Publications

This study investigated the possible natural formation of silver nanoparticles (AgNPs) in Ag+ −fulvic acid (FA) solutions under various environmentally relevant conditions (temperature, pH, and UV light). Increase in temperature (24−90 °C) and pH (6.1−9.0) of Ag+ −Suwannee River fulvic acid (SRFA) solutions accelerated the appearance of the characteristic surface plasmon resonance (SPR) of AgNPs. The rate of AgNP formation via reduction of Ag+ in the presence of different FAs (SRFA, Pahokee Peat fulvic acid, PPFA, Nordic lake fulvic acid, NLFA) and Suwannee River humic acid (SRHA) followed the order NLFA > SRHA > PPFA > SRFA. This order was found to be …


Charge, Bonding, And Magneto-Elastic Coupling In Nanomaterials, Qi Sun Dec 2012

Charge, Bonding, And Magneto-Elastic Coupling In Nanomaterials, Qi Sun

Doctoral Dissertations

Phonons are exquisitely sensitive to finite length scale effects in a wide variety of materials because they are intimately connected to charge, structure, and magnetism, and a quantitative analysis of their behavior can reveal microscopic aspects of chemical bonding and spin-phonon coupling. To investigate these effects, we measured infrared vibrational properties of bulk and nanoscale MoS2 [molybdenum disulfide], MnO [manganese(II) oxide], and CoFe2O4 [cobalt iron oxide]. From an analysis of frequencies, oscillator strengths, and high-frequency dielectric constants, we extracted Born and local effective charges, and polarizability for MoS2 and MnO. For MoS2 nanoparticles, in …


Charge-Lattice-Spin Interactions In Molecule-Based Magnets, Tatiana Vladimir Brinzari Dec 2012

Charge-Lattice-Spin Interactions In Molecule-Based Magnets, Tatiana Vladimir Brinzari

Doctoral Dissertations

Many of the most attractive properties of multifunctional materials can be traced to the competition between charge, structure, and magnetism. The discovery that these interactions can be tuned with various physical stimuli has accelerated interest in their behavior under extreme conditions. In this dissertation I present a spectroscopic investigation of several model molecule-based magnets under external stimuli of magnetic field and temperature. The compounds of interest include MII[N(CN)2]2 (M=Mn, Co) and [Ru2(O2CMe)4]3[Cr(CN)6]. These materials are attractive for their subtle interplay between electronic, magnetic and structural …


Confinement Effects Of Solvation On A Molecule Physisorbed On A Metal Particle, Jacob Fosso Tande Dec 2012

Confinement Effects Of Solvation On A Molecule Physisorbed On A Metal Particle, Jacob Fosso Tande

Doctoral Dissertations

We describe and present results of the implementation of the surface and volume polarization for electrostatics~(SVPE) and the iso-density surface solvation models. Unlike most other implementation of the solvation models where the solute and the solvent are described with multiple numerical representation, our implementation uses a multiresolution, adaptive multiwavelet basis to describe both solute and the solvent. This requires reformulation to use integral equations throughout as well as a conscious management of numerical properties of the basis.

Likewise, we investigate the effects of solvation on the static properties of a molecule physisorbed on a spherical particle, modeled as a polarizable …


Structure And Chemistry Of Model Catalysts In Ultrahigh Vacuum, Joshua D. Walker Dec 2012

Structure And Chemistry Of Model Catalysts In Ultrahigh Vacuum, Joshua D. Walker

Theses and Dissertations

The study of catalysis is a key area of focus not only in the industrial sector but also in the nature and biological systems. The market for catalysis is a multi-billion dollar industry. Many of the materials and products we use on a daily basis are formed through a catalytic process. The quest to understanding and improving catalytic mechanisms is ongoing. Many model catalysts use transition metals as a support for chemical reactions to take place due to their selectivity and activity. Palladium, gold, and copper metals are studied in this work and show the ability to be catalytically reactive. …


Controlling Nanoparticle Dispersion For Nanoscopic Self-Assembly, Nathan S. Starkweather Dec 2012

Controlling Nanoparticle Dispersion For Nanoscopic Self-Assembly, Nathan S. Starkweather

Master's Theses

Nanotechnology is the manipulation of matter and devices on the nanometer scale. Below the critical dimension length of 100nm, materials begin to display vastly different properties than their macro- or micro- scale counterparts. The exotic properties of nanomaterials may trigger the start of a new technological revolution, similar to the electronics revolution of the late 20th century. Current applications of nanotechnology primarily make use of nanoparticles in bulk, often being made into composites or mixtures. While these materials have fantastic properties, organization of nano and microstructures of nanoparticles may allow the development of novel devices with many unique properties. …


In Situ Pm-Irras Studies Of A Floating Bilayer Lipid Membrane At Au(111) Electrode Surface, Su Zhangfei, Kycia Annia, Jay Leitch J., Lipkowski Jacek Oct 2012

In Situ Pm-Irras Studies Of A Floating Bilayer Lipid Membrane At Au(111) Electrode Surface, Su Zhangfei, Kycia Annia, Jay Leitch J., Lipkowski Jacek

Journal of Electrochemistry

In situ Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) was used to study the structure of a DMPC + cholesterol + GM1 floating bilayer lipid membrane (fBLM) at a Au(111) surface. 1-thio-beta-D-glucose (beta-Tg) was self-assembled onto the Au electrode to increase the overall hydrophilicity of the surface. The fBLM was deposited on the beta-Tg self-assembled monolayer (SAM) using a combination of Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) techniques. The carbohydrate headgroups of the GM1 molecules were physically adsorbed to the beta-Tg SAM forming a water rich cushion between the fBLM and the modified gold substrate. The PM-IRRAS spectra indicate that the DMPC molecules within …


Underpotential Deposition Of Copper On Pt(S)[N(100)X(110)] Stepped Surfaces, Gisbert Rubn, Climent Vctor, Herrero Enrique, M. Feliu Juan Oct 2012

Underpotential Deposition Of Copper On Pt(S)[N(100)X(110)] Stepped Surfaces, Gisbert Rubn, Climent Vctor, Herrero Enrique, M. Feliu Juan

Journal of Electrochemistry

The underpotential deposition of Cu on platinum stepped surfaces composed of (100) terraces and (110) monoatomic steps has been studied in different acidic solutions. It has been found that the initial stage of copper deposition on the surface takes place simultaneously on terrace and step sites, irrespective of the nature of the adsorbing anion. During the voltammetric deposition of a full monolayer, several peaks can be observed. The analysis of the dependence of the peak charge with the step density allows assigning the different peaks to different deposition sites. The peak appearing at most positive potentials corresponds to the deposition …


Electrochemical Detection Of Ammonia In Aqueous Solution Using Fluorescamine: A Comparison Of Fluorometric Versus Voltammetric Analysis, Panchompoo Janjira, G. Compton Richard Oct 2012

Electrochemical Detection Of Ammonia In Aqueous Solution Using Fluorescamine: A Comparison Of Fluorometric Versus Voltammetric Analysis, Panchompoo Janjira, G. Compton Richard

Journal of Electrochemistry

Fluorescamine is a non-fluorescent reagent widely used for the quantitative determination of primary amines by fluorescence spectroscopy as it reacts readily with primary amines to form a fluorescent product. In this work, a new sensitive voltammetric method for the detection of ammonia in aqueous solution by the reaction with fluorescamine has been developed. First, the electrochemical behaviour of fluorescamine in the absence and presence of ammonia was investigated in 0.1 mol L-1 borate buffer solution (pH 9.0) by cyclic voltammetry using a glassy carbon (GC) electrode. As for fluorescamine itself, a well-defined irreversible oxidation peak could be observed at …


The Oxidation Of Hydrogen Peroxide On Nanostructured Rhodium Microelectrodes, N. Bartlett Philip, F. Esterle Thomas Oct 2012

The Oxidation Of Hydrogen Peroxide On Nanostructured Rhodium Microelectrodes, N. Bartlett Philip, F. Esterle Thomas

Journal of Electrochemistry

Mesoporous Rh films were deposited onto platinum microelectrodes from the H1 lyotropic liquid crystalline phase of C12EO8 (octaethyleneglycol monododecyl ether). The electrodes show well defined voltammetry for the oxidation and the reduction of hydrogen peroxide at low concentrations (<10 mmol•L-1) with excellent stability for operation at neutral pH. Based on the hysteresis in the current and the potential dependence the oxidation of hydrogen peroxide occurs through a CEE mechanism involving Rh(OH)3 on the mesoporous Rh electrode surface. At higher hydrogen peroxide concentrations the current reaches a plateau that is due to either saturation of the binding sites for hydrogen peroxide or limitation of the reaction due to acidification of the solution within the pores. For the thin films (below 200 nm) the hydrogen peroxide calibration curves we …


The Electrochemical Properties Of 1-Pyrenebutyric Acid/Graphene Composites And Their Application In Glucose Biosensors, Min Wang, Jiong Wang, Fengbin Wang, Xinghua Xia Oct 2012

The Electrochemical Properties Of 1-Pyrenebutyric Acid/Graphene Composites And Their Application In Glucose Biosensors, Min Wang, Jiong Wang, Fengbin Wang, Xinghua Xia

Journal of Electrochemistry

The electrochemical properties of 1-pyrenebutyric acid/graphene composites (PBA/G) obtained by one-step synthesis via π-π stacking was investigated. The electrochemical impedance titration curve shows the surface charge changes as function of solution pH by using ferricyanide/ferrocyanide redox couple as the probe. An apparent pKa value is estimated as 6.2 according to the impedance titration curve. In addition, a glucose biosensor was constructed by immobilizing glucose oxidase (GOD) on the surface of PBA/G via covalent interaction. This biosensor shows a linear response to glucose within the concentration up to 5 mmol L-1 with a detection limit of 0.085 mmol L …


Foreword, Bin Ren Oct 2012

Foreword, Bin Ren

Journal of Electrochemistry

On the request of Prof. Shi-Gang Sun, Editor-in-Chief of Journal of Electrochemistry, I served as the guest editor for this International Special Issue on Current Electrochemistry. The Journal of Electrochemistry was founded in 1995 associated to the Chinese Chemical Society just before the 46th Annual meeting of the International Society of Electrochemistry (ISE). Prof. Zhao-Wu Tian was the founder of the journal and had been serving as the Editor-in-Chief until 2010. The journal is known for high quality scientific papers related to the electrochemical science, techniques and engineering, and is well-known in Electrochemistry Community in China. However, the journal …


Electrochemical Synthesis Of Silver-Tetracyanoquinodimethane Nanorods At Agar Supported Water/1,2-Dichloroethane Interface, Li Huang, Yixian Wang, Michael V. Mirkin, Bin Ren, Dongping Zhan Oct 2012

Electrochemical Synthesis Of Silver-Tetracyanoquinodimethane Nanorods At Agar Supported Water/1,2-Dichloroethane Interface, Li Huang, Yixian Wang, Michael V. Mirkin, Bin Ren, Dongping Zhan

Journal of Electrochemistry

Silver-tetracyanoquinodimethane (AgTCNQ) is an important charge transfer salt due to its high conductivity and other electronic properties. In this communication, we report the synthesis of AgTCNQ at the liquid/liquid interface. Agar was used as a gelling agent to support water/1,2-dichloroethane (DCE) interface. Silver ions were transferred from the hydrogel into DCE phase, where they combined with TCNQ- to form AgTCNQ nanorods. The developed method can provide a new route for synthesis of functional materials based on the electrochemistry at the liquid/liquid interface.


A New Random Walk Simulation Model For Study Of Diffusion Behavior Of Single Particle Within Two-Dimensional Space, Jianwei Zhao, Lili Chen, Yingqiang Fu, Shaohong Li, Tiannan Chen, Shijie Zhang Oct 2012

A New Random Walk Simulation Model For Study Of Diffusion Behavior Of Single Particle Within Two-Dimensional Space, Jianwei Zhao, Lili Chen, Yingqiang Fu, Shaohong Li, Tiannan Chen, Shijie Zhang

Journal of Electrochemistry

Research on diffusion behaviors is of significant value in that it is closely related to transport phenomena in micro-chemistry. However, the effects of variables on diffusion are still unclear. Here, we developed and programmed a simulation methodology along with data analysis, which was capable to simulate the diffusion of a particle within twodimensional heterogeneous space in large timescale; the effects of periodically arranged impenetrable barriers of specific shape and lateral drifting velocity on diffusion behavior were studied. As well as standard mean square displacement analysis, a new method, the appearance probability distribution method, was introduced, which revealed whether the particle …


Organics In Environmental Ices: Sources, Chemistry, And Impacts, V. F. Mcneill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, Marcelo I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, D. Voisin Oct 2012

Organics In Environmental Ices: Sources, Chemistry, And Impacts, V. F. Mcneill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, Marcelo I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, D. Voisin

Chemistry Faculty Publications

The physical, chemical, and biological processes involving organics in ice in the environment impact a number of atmospheric and biogeochemical cycles. Organic material in snow or ice may be biological in origin, deposited from aerosols or atmospheric gases, or formed chemically in situ. In this manuscript, we review the current state of knowledge regarding the sources, properties, and chemistry of organic materials in environmental ices. Several outstanding questions remain to be resolved and fundamental data gathered before an accurate model of transformations and transport of organic species in the cryosphere will be possible. For example, more information is needed regarding …


Studies Of Microscopic Scale Strains In Nickel Alloys Resulting From Mechanical And Chemical Forces, Jing Chao Oct 2012

Studies Of Microscopic Scale Strains In Nickel Alloys Resulting From Mechanical And Chemical Forces, Jing Chao

Electronic Thesis and Dissertation Repository

The nickel-based Alloy 600, also known as Inconel 600 has been found to be susceptible to stress corrosion cracking (SCC) in high temperature aqueous environments. Despite extensive research, the mechanisms by which this process occurs remain in question. It is known that SCC results from the simultaneous effects of a chemically corrosive environment and a tensile stress. Many studies have been conducted on the microscopic chemical changes associated with SCC. There have been fewer studies of the microscopic stress/strain process. The main objective of this thesis is to use the new x-ray based diffraction technique – polychromatic x-ray microdiffraction (PXM) …


The Influence Of Auxiliary Ligands On The Photophysical Characteristics Of A Series Of Ruthenium (Ii) Polypyridyl Complexes, Luke O'Neill, Laura Perdisatt, Christine O'Connor Oct 2012

The Influence Of Auxiliary Ligands On The Photophysical Characteristics Of A Series Of Ruthenium (Ii) Polypyridyl Complexes, Luke O'Neill, Laura Perdisatt, Christine O'Connor

Articles

A series of ruthenium polypyridyl complexes were studied using UV/Vis absorption and luminescence spectroscopy as well as luminescence lifetime determination by time correlated single photon counting (TCSPC). The complexes were characterised with regard to the variation in the electronic band-gap as a result of the sequential variation of the auxiliary ligand 2,2’-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,2’-biquinoline (biq) ligands while the main ligand remained constant for three different main ligand types. Luminescence yields were calculated and correlated with structural and electronic variation. It was found that both the absorption and emission characteristics could be tailored through the systematic variation of …


Fundamental Studies And Bioanalytical Applications Of Nanostructured-Initiator Mass Spectrometry (Nims), Jin Li Sep 2012

Fundamental Studies And Bioanalytical Applications Of Nanostructured-Initiator Mass Spectrometry (Nims), Jin Li

Electronic Thesis and Dissertation Repository

Nanostructured-Initiator Mass Spectrometry (NIMS), which uses ‘initiator’ molecules trapped within a nanostructured material to assist the release and ionization of intact molecules adsorbed on that material's surface upon laser or ion irradiation, is a new soft desorption/ ionization technique with several positive attributes including extraordinarily high detection sensitivities, relatively simple sample preparation protocols, and can be initiated using photon or ion irradiation sources. As result NIMS has a great deal of potential for the ready detection of small molecules from complex biofluids including metabolites, and for tissue imaging.

In the thesis, a variety of nanostructured materials including porous silicon (pSi), …


Investigations Of Zeolite Growth By Atomic Force Microscopy (Afm), Donghan Chen Aug 2012

Investigations Of Zeolite Growth By Atomic Force Microscopy (Afm), Donghan Chen

Electronic Thesis and Dissertation Repository

Zeolites are microporous materials that have been used extensively in various fields. A better understanding on their crystallization process is important for their investigations. Atomic force microscopy (AFM) is a powerful tool for studying the growing traces on the crystal surface, providing information regarding the relation between surface events and framework structure. This thesis mainly focuses on the surface investigation of several zeolites and microporous materials. ZSM-11 single crystals were synthesized under hydrothermal conditions, and their crystallization process was monitored by AFM, PXRD, SEM, and SSNMR. SAPO-34 prepared under both HTS and DGC conditions showed morphological differences that are related …


Carbon Nanotubes With Ni2P Nanoparticles As A Counter Electrode In Dye-Sensitized Solar Cells, Yan-Ye Dou, Nan-Fu Yan, Guo-Ran Li, Xue-Ping Gao Aug 2012

Carbon Nanotubes With Ni2P Nanoparticles As A Counter Electrode In Dye-Sensitized Solar Cells, Yan-Ye Dou, Nan-Fu Yan, Guo-Ran Li, Xue-Ping Gao

Journal of Electrochemistry

Carbon nanotubes (CNTs) supported by Ni2P nanoparticles are prepared and used as a counter electrode in dye-sensitized solar cells (DSSCs) for the first time. The CNTs-Ni2P composite was prepared by the heat treatment of a mixed precursor including nickel chloride, sodium hypophosphite and CNTs in argon atmosphere. The X-Ray diffraction (XRD) results indicate that the as-prepared sample consists of hexagonal Ni2P and carbon nanotubes. No peaks of other nickel phosphides are observed in the XRD pattern. Microstructure of the Ni2P-CNTs composite was investigated using transmission electron microscopy (TEM). It is shown that the Ni …


Influences Of Particle Size And Sulfuric Acid Treatment On The Electrochemical Performance Of Bamboo Charcoal, Yu Yao, Ai-Shui Yu Aug 2012

Influences Of Particle Size And Sulfuric Acid Treatment On The Electrochemical Performance Of Bamboo Charcoal, Yu Yao, Ai-Shui Yu

Journal of Electrochemistry

The bamboo charcoal had been milled and treated by sulfuric acid. The influences of as-prepared material particle size and sulfuric acid treatment on the electrochemical performance had been studied. The result displays that the bamboo charcoal with mean particle size about 5 μm has the best first coulombic efficiency. Sulfuric acid treatment could raise the discharge capacity of bamboo charcoal, and the first discharge capacity of 328.2 mAh.g-1 was obtained with the bamboo charcoal treated by sulfuric acid for 18 h. Furthermore, the capacity of 302.3 mAh.g-1 could be maintained for 50 cycles, showing good cycle performance.