Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

PDF

Theses/Dissertations

2014

Institution
Keyword
Publication

Articles 1 - 30 of 56

Full-Text Articles in Chemistry

Incorporation Of Charge Transfer Into Classical Molecular Dynamics Force Fields With Applications In Physical Chemistry., Marielle Soniat Dec 2014

Incorporation Of Charge Transfer Into Classical Molecular Dynamics Force Fields With Applications In Physical Chemistry., Marielle Soniat

University of New Orleans Theses and Dissertations

The presence of charge transfer (CT) interactions is clear in a variety of systems. In CT, some electron density is shifted from one molecule to another (non-bonded) molecule. The importance of this CT interaction is unclear. Previous attempts to look at the conse- quences of CT required the use of ab initio molecular dynamics (AIMD), a computationally intensive method. Herein, a method for including CT in force field (FF) simulations is described. It is efficient, produces charges in agreement with AIMD, and prevents long- ranged CT.

This CT MD method has been applied to monatomic ions in water. When solvated, …


The Effect Of Ph And Counterion On The Size Distribution And Luminescence Lifetime Of Terbium-Doped Lanthanum Nanocrystals, Sarah Baker Dec 2014

The Effect Of Ph And Counterion On The Size Distribution And Luminescence Lifetime Of Terbium-Doped Lanthanum Nanocrystals, Sarah Baker

Undergraduate Honors Theses

In recent years, nanoparticles have been applied to and have gained prevalence in fields such as chemistry, biology, the medical sciences, and biotechnology,and have attracted the attention of medical researchers as potential microscopic drug delivery systems in the human body. In particular, nanoparticles made with the lanthanides have shown themselves to be useful to many biological applications due to their unique luminescent properties. It is crucial to determine optimum synthetic parameters so that nanoparticles are both small enough to pass through the kidneys and also have the ability to attach different functional groups so that they may be relevant to …


Computational Studies For Optimization And Design Of Extracting Agents For Separation Of Lanthanides And Actinides, Deborah Andrea Penchoff Dec 2014

Computational Studies For Optimization And Design Of Extracting Agents For Separation Of Lanthanides And Actinides, Deborah Andrea Penchoff

Doctoral Dissertations

Rare earths and actinides are of great interest given their varied applications in energy conversion and storage, such as in catalysis and batteries, and for advanced technological applications related to optical and magnetic properties (including electronics and automotive), amongst others. Many of the rare earth elements are considered endangered species due to their unique properties which have no clear alternatives that will maintain performance for important applications. The optimal approach is to find readily available alternatives for critical materials to ensure a certain standard of living and quality of life for future generations, but it is very likely that reusing …


Oxidative Damage To Dna 2´-Deoxyribose By Carbonate Radicals: Reaction Mechanisms And Products, Terence J. Moore Dec 2014

Oxidative Damage To Dna 2´-Deoxyribose By Carbonate Radicals: Reaction Mechanisms And Products, Terence J. Moore

Electronic Theses and Dissertations

The carbonate radical anion (CO3•-, CR) is an important reactive oxygen species produced in vivo by one-electron oxidation of CO2 or bicarbonate, constituents of the major physiological buffer. It was demonstrated for the first time by using an HPLC-based analysis of low-molecular products of DNA damage that CRs react with DNA 2΄-deoxyribose by the hydrogen abstraction mechanism. CRs exhibit a ~ 800-fold preference for one-electron oxidation of guanine over hydrogen abstraction from DNA sugar, in sharp contrast with •OH. CRs also have, as compared to •OH, an increased preference for the H1΄ abstraction, which is the …


Neutron Study Of Structure And Dynamics Of Rigid Polymers, Naresh Osti Dec 2014

Neutron Study Of Structure And Dynamics Of Rigid Polymers, Naresh Osti

All Dissertations

The structure and the dynamics in two different classes of rigid polymers; ionomers and rigid luminescent polymers, have been investigated predominantly by neutron techniques. Rigidity of the backbones of both polymers affects their properties. For ionomers, it affects transport pathways, therefore, their applications for energy and separation membranes. In luminescent polymers, it determines the conformations of the chains and their electro-optical response. One group of the polymers consists of rigid hydrophobic para-phenylene backbone decorated with pendant phenyl side chains functionalized with sulfonic acid (SPP). The other family of polymers consists of poly para-phenyleneethynylene (PPE) backbone that becomes conjugated upon conformational …


Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley Dec 2014

Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley

UNLV Theses, Dissertations, Professional Papers, and Capstones

Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials.

For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Nanoparticle Building Blocks For Functional Structures, Youngdo Jeong Nov 2014

Nanoparticle Building Blocks For Functional Structures, Youngdo Jeong

Doctoral Dissertations

A major goal in material science is achieving a desired function using structures fabricated with designed building blocks. Advanced synthetic and self-assembly techniques allow various nanomaterials to become promising building blocks, providing the control of the interaction between building blocks. The unique properties of nanomaterials can be transferred to structured systems. Among nanomaterials, inorganic nanoparticles such as gold nanoparticles (AuNPs), magnetic particles, and quantum dots (QDs) provide useful physical properties stemming from their inorganic core, large surface areas, and oriented surface functionalities. My research has focused on fabricating functional systems using gold nanoparticles (AuNPs), manipulating the interaction between AuNPs, bio-entities, …


On The Assembly Of Functionalized Cdse Nanorods, Sirinya Chantarak Nov 2014

On The Assembly Of Functionalized Cdse Nanorods, Sirinya Chantarak

Doctoral Dissertations

High aspect ratio (AR) CdSe nanorods (NRs) of well-defined sizes were synthesized to optimize the geometries of photovoltaic devices made from these nanorods. Long-range ordering of hexagonal arrays of high AR NRs is achieved by a combination of controlled solvent evaporation and the use of an applied electric field. Regioregular P3HT chains and oligothiophene were functionalized with ligating end-groups to provide contact to the NRs. Vertically oriented assemblies of CdSe NRs functionalized with terthiophene and polythiophene are also obtained. Hexagonal arrays of these nanocomposites were characterized by transmission electron microscopy (TEM). Three types of polythiophenes: poly(3-hexylthiol thiophene), poly(3-hexylamine thiophene), and …


Supersonic Jet Spectroscopy Of Synthetic Foldamers, Multichromophores, And Their Water Containing Clusters, Evan Gardner Buchanan Oct 2014

Supersonic Jet Spectroscopy Of Synthetic Foldamers, Multichromophores, And Their Water Containing Clusters, Evan Gardner Buchanan

Open Access Dissertations

A central theme specific to this dissertation concerns the conformation-specific spectroscopy of flexible molecules in an effort to bridge the complexity gap. Generally, molecules in the complexity gap have several flexible coordinates yet conformational isomerization still occurs along a simple reaction coordinate on the potential energy surface. Molecules in this regime benefit greatly from experiments probing the potential energy surfaces and provide a means to develop and test new theories in an effort to explain more complex system. These measurements are possible through the utilization of a supersonic jet expansion to collisionally cool molecules into their vibrational zero-point levels, collapsing …


Determination Of Disulfide Bond Connecting Patterns Via Tandem Mass Spectrometry (Msn) And Biomolecular Ion/Radical Reactions, Kirt Lenroy Durand Oct 2014

Determination Of Disulfide Bond Connecting Patterns Via Tandem Mass Spectrometry (Msn) And Biomolecular Ion/Radical Reactions, Kirt Lenroy Durand

Open Access Dissertations

Disulfide bond formation is one of the most common post translational modifications to occur in proteins and naturally occurring peptides. Disulfide bond formation plays a critical role in stabilizing their three-dimensional structure; therefore, it is very important to pinpoint the correct disulfide bond connecting pattern in order to fully understand the biological functions of these proteins and peptides. To fully characterize an analyte containing disulfide bonds, the sequence must first be known followed by the disulfide bond connecting pattern. This presents an analytical challenge as there are very few methodologies that can produce those essential pieces of information. The gold …


Excited States Of Chromophores And Vibronic Interactions, Benjamin T. Nebgen Oct 2014

Excited States Of Chromophores And Vibronic Interactions, Benjamin T. Nebgen

Open Access Dissertations

The main focus of my Ph.D. work has been on building a vibronic coupling model for multichromophores and extending that model to more general systems. This Dissertation serves as both a summary of this work as well as a manual for the two vibronic coupling programs I have written. It is my hope that the instructions written here are complete enough for any who would like to replicate my work on vibronic coupling on other systems. ^ Additionally, I have also worked on a few purely computational projects not directly related to the vibronic coupling work. The status of these …


Resonant Two-Photon Ionization Studies Of Non Covalent Interactions In Halo Aromatic Clusters And Spin-Orbit Coupling Modeling In Mono-Halocarbenes, Silver Nyambo Oct 2014

Resonant Two-Photon Ionization Studies Of Non Covalent Interactions In Halo Aromatic Clusters And Spin-Orbit Coupling Modeling In Mono-Halocarbenes, Silver Nyambo

Dissertations (1934 -)

Non-covalent interactions in halobenzenes (PhX) (X=F, Cl, Br) and phenylamine (C6 H5 NH2 ) have been studied here using resonance two-photon ionization (R2PI) spectroscopy combined with a linear TOF-mass spectrometer. Their interaction with polar molecules in form of ammonia (NH 3 ) and trifluorohalomethanes (CF3 X) has also been studied. DFT and TD-DFT calculations using M06-2X functionals were carried out on different cluster conformations to compliment experimental results. A general trend of broadness in homogenous dimers (PhX)2 , has been attributed to mainly the presence of multiple cluster isomers and Frank-Condon activity in the low …


Variable Pressure Nuclear Magnetic Resonance Studies Of Ionic Liquids And Electrophoretic Probe Design, Armando Julio Rua Oct 2014

Variable Pressure Nuclear Magnetic Resonance Studies Of Ionic Liquids And Electrophoretic Probe Design, Armando Julio Rua

Dissertations, Theses, and Capstone Projects

Energy storage materials play a key role in, efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. The improve efficiency of energy use stimulates the development of energy storage such as batteries or super capacitors, toward higher power and energy density, which significantly depends upon the advancement of new materials used in these devices. The new materials need better understanding and description in the electrochemical properties. Nuclear Magnetic Resonance (NMR) has been an important tool in the characterization of ionic liquids and solids. The measurements of the relaxation times and the diffusion coefficient …


Effect Of Gamma Radiation On The Interfacial Reactions And Transfer Processes Of Phosphonium-Based Ionic Liquids With Carbon Steel, Ryan P. Morco Sep 2014

Effect Of Gamma Radiation On The Interfacial Reactions And Transfer Processes Of Phosphonium-Based Ionic Liquids With Carbon Steel, Ryan P. Morco

Electronic Thesis and Dissertation Repository

This thesis presents work on the effects of ionizing radiation on phosphonium-based ionic liquids (ILs). Ionic liquids are known for their tunable properties which make them attractive options for applications for the separation and sequestration of metal ions from spent nuclear fuels, and candidate lubricants for systems under severe conditions. The high radiation environment found in spent fuel processing may decompose the solvents (ILs) used in the process and affect their separation efficiency. The radiolytic decomposition products can also alter the physical and chemical properties of an IL in ways which can affect the potential corrosion of metal alloys in …


Radiation Induced Corrosion Of Stellite-6, Mehran Behazin Sep 2014

Radiation Induced Corrosion Of Stellite-6, Mehran Behazin

Electronic Thesis and Dissertation Repository

This thesis presents a study on the aqueous corrosion of a cobalt-based alloy, Stellite-6. Since aqueous corrosion kinetics are strongly influenced by water chemistry conditions (pH, temperature, and redox agents), a systematic study of Stellite-6 corrosion was carried out. The aim was to develop an ability to predict corrosion behaviour and particularly metal dissolution rates for cobalt alloys under a range of conditions. The work focused on a study of the influence of ionizing radiation on corrosion. This is of particular interest in the nuclear industry where radiation fields are present. Ionizing radiation creates oxidizing radiolysis products and alters the …


Criteria For Evolution Of Successful Proteins: Fold Fitness And Domain Dynamics Explored, Tyrel Bryan Sep 2014

Criteria For Evolution Of Successful Proteins: Fold Fitness And Domain Dynamics Explored, Tyrel Bryan

Chemistry and Chemical Biology ETDs

The Haloacid Dehalogenase Superfamily (HADSF) is a ubiquitous family of enzyme with more than 32,000 members. A variety of reactions are catalyzed by HAD members, but a majority of HAD members are phosphatases. Dephosphorlyation of organophosphate metabolites are carried out in the conserved Rossmann-like core domain. The Rossman-like core domain houses the conserved active site residues necessary for catalysis and also supports domain inserts associated with substrate binding. This dissertation will focus primarily on investigating fold fitness and domain dynamics of HAD proteins more specifically three C2 capped proteins. The first part will focus on whether or not the prevailing …


Spectroscopic Studies Of Non-Covalent Metal Ion-Ligand Interactions, Abdulkadir Kocak Aug 2014

Spectroscopic Studies Of Non-Covalent Metal Ion-Ligand Interactions, Abdulkadir Kocak

Doctoral Dissertations

Non-covalent interactions between metal ions and ligands such as water and methane have been extensively studied due to their biological and industrial importance. Gas phase studies can reveal the fundamental nature of these metal-ligand interactions. Photofragment spectroscopy is a powerful technique to investigate bond strengths, dissociation dynamics, molecular geometry and clustering and can be applied to electronic and vibrational spectroscopy. Using a home built apparatus, which combines ion production via laser ablation, separation via time-of-flight (TOF) mass spectrometry, laser excitation, and TOF fragment mass analysis, we have obtained electronic spectra of Co+(H2O) and vibrational spectra of …


Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick Aug 2014

Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick

Doctoral Dissertations

Dramatic improvements in organic photovoltaic device efficiency can be obtained by optimizing spectral absorbance and frontier molecular orbital (FMO) energies, increasing solid state exciton/charge mobility, and utilizing p-/n-type nanoarchitecture. Combining all of these properties into a new material presents a considerable synthetic challenge because potential commercial applications require materials that are high-performance and inexpensive. Thus, it is advantageous to design new materials using a versatile, modular synthetic approach that allows each design criterion to be engineered individually, in a synthetically efficient manner. Several strategies were successfully pursued using simple interchangeable electron donor and acceptor components as functional modules, which …


Optical And Scanning Probe Studies Of Isolated Poly (3-Hexylthiophene) Nanofibers, Mina Baghgarbostanabad Aug 2014

Optical And Scanning Probe Studies Of Isolated Poly (3-Hexylthiophene) Nanofibers, Mina Baghgarbostanabad

Doctoral Dissertations

Plastic electronics have an essential role in the future technologies owing to their compelling characteristics such as light weight, biocompatibity, low cost fabrication, and tunable optoelectronic properties. However, the performance of polymer-based devices strongly depends on the efficiency of exciton formation and dynamics that are themselves strongly sensitive to polymer molecular packing and structural order. Therefore, the current challenge in achieving high efficiency is establishing a correlation between molecular packing and exciton coupling. P3HT nanofibers represent an attractive platform for studying optical and electronic properties of exciton coupling because their nominal (highly crystalline) internal chain packing structure is known. A …


Mechanistic Studies Of Salt Effects On Bimolecular Electron-Transfer Reactions Of Pentaamine Ruthenium Pyridyl Complexes Studied By 19f Nmr Line-Broadening And T2 Spin-Echo Techniques, Nicholas J. Magarian Aug 2014

Mechanistic Studies Of Salt Effects On Bimolecular Electron-Transfer Reactions Of Pentaamine Ruthenium Pyridyl Complexes Studied By 19f Nmr Line-Broadening And T2 Spin-Echo Techniques, Nicholas J. Magarian

Master's Theses

Kinetic salt effects on the bimolecular ET self-exchange reaction between pentaamineruthenium(II)(3-trifluoromethylpyridine)2+, (NH3)5RuIItfmp2+, and pentaamineruthenium(III)(3-trifluoromethylpyridine)3+, (NH3)5RuIIItfmp3+, have been measured using both 19F NMR line-broadening and CPMG T2 spin-echo relaxation techniques in H2O and D2O. Over the equimolar reactants concentration range of 0.10 mM – 8.00 mM there was a definite “self-salting” rate increase arising from the increased solution ionic strengths due to the reactants and counterions themselves. The magnitude of this effect diverged significantly, however, …


Gamma-Radiolysis Kinetics Of Liquid, Vapour And Supercritical Water, Nastaran Yousefi Aug 2014

Gamma-Radiolysis Kinetics Of Liquid, Vapour And Supercritical Water, Nastaran Yousefi

Electronic Thesis and Dissertation Repository

Inadequate understanding of radiation-induced water chemistry under supercritical conditions has been identified as one of the important obstacles in the development of a supercritical water-cooled reactor. Radiolysis of supercritical water generates a variety of redox reactive species, but their persistence in supercritical water is not well understood. This thesis describes the work performed towards addressing this deficiency: (1) the development of a reliable experimental method to determine the concentrations of water radiolysis products, primarily H2, O2 and H2O2, formed under g-irradiation of sub- and supercritical water (SCW), (2) the expansion of the application …


Isotropic Oscillator Under A Magnetic And Spatially Varying Electric Field, David L. Frost Mr., Frank Hagelberg Aug 2014

Isotropic Oscillator Under A Magnetic And Spatially Varying Electric Field, David L. Frost Mr., Frank Hagelberg

Undergraduate Honors Theses

We investigate the energy levels of a particle confined in the isotropic oscillator potential with a magnetic and spatially varying electric field. Here we are able to exactly solve the Schrodinger equation, using matrix methods, for the first excited states. To this end we find that the spatial gradient of the electric field acts as a magnetic field in certain circumstances. Here we present the changes in the energy levels as functions of the electric field, and other parameters.


Characterization Of Water-Solid Interactions In Crystalline Ingredients And Development Of Deliquescence Measurement Recommendations, Matthew C. Allan Jul 2014

Characterization Of Water-Solid Interactions In Crystalline Ingredients And Development Of Deliquescence Measurement Recommendations, Matthew C. Allan

Open Access Theses

There are five major mechanisms of water-solid interactions. The primary focus of this thesis was on two of these: deliquescence and hydrate formation. Many crystalline food ingredients are deliquescent compounds (e.g., NaCl, sucrose, and ascorbic acid) and some are both deliquescent and hydrate formers (e.g., glucose, thiamine HCl, citric acid). Deliquescence is the first order phase transformation of a crystalline solid to a solution above a critical relative humidity (RH) known as the deliquescence point (RH0). A crystalline hydrate is a pseudo-polymorph in which water is incorporated into the crystal structure, altering the molecular formula and the physical properties.^ To …


Gas-Phase Ion/Ion Reactions Of Biomolecules: An Examination Of Carboxylate Reactivity And Arginine Based Non-Covalent Complexes, Nathan Zachary Barefoot Jul 2014

Gas-Phase Ion/Ion Reactions Of Biomolecules: An Examination Of Carboxylate Reactivity And Arginine Based Non-Covalent Complexes, Nathan Zachary Barefoot

Open Access Theses

The advent of Electrospray Ionization with the ability to generate multiply charges ions has contributed significantly to the study of gas-phase ion/ion reactions. With the tools available in mass spectrometry it has been shown that these reactions are effective at transforming one type of gaseous ion into another through a series of reactions. This work examines some of these reactions and their application to field of proteomics specifically focusing on the amino acids of arginine and lysine. NHS reagents have been shown to react to both of these molecules with in the gas-phase under different conditions but have relies on …


Fundamental Studies On Copper Zeolites For Catalytic No X Abatement, Anuj Arun Verma Jul 2014

Fundamental Studies On Copper Zeolites For Catalytic No X Abatement, Anuj Arun Verma

Open Access Dissertations

Stringent regulations in mobile NOx emissions have resulted in the development of Standard Selective Catalytic Reduction (SCR) as the dominant NOx abatement technology in lean burn diesel engines. Standard SCR is a reaction of nitric oxide (NO) with ammonia (NH3), in the presence of oxygen (O 2) to form nitrogen (N2) and water (H2O). Copper containing zeolites show commercially viable SCR performance. Cu-SSZ-13 (CHA framework), a member of this family, is a preferred catalyst for SCR applications because it shows exceptional hydrothermal stability in addition to commercially viable SCR performance. Our work focuses …


Nitroxide Radicals For Low Frequency Electron Paramagnetic Resonance Imaging (Epri), Joshua R. Biller Jun 2014

Nitroxide Radicals For Low Frequency Electron Paramagnetic Resonance Imaging (Epri), Joshua R. Biller

Electronic Theses and Dissertations

Optimization of nitroxides as probes for EPR imaging requires detailed understanding of spectral properties such as spin lattice relaxation times, spin packet linewidths, and nuclear hyperfine splitting. Initial measurements of relaxation times for six low molecular weight nitroxides at X-band stimulated further measurement at frequencies between 250 MHz and 34 GHz. The impact of tumbling was studied with perdeuterated 2,2,6,6-tetramethyl-4-piperidinyl-1-oxyl (PDT) in five solvents with viscosities resulting in tumbling correlation times, τR, between 4 and 50 ps. A set of three 14N/15N pairs of nitroxides in water was selected such that τR varied between …


X-Ray Structure Analysis And Topological Charge Density Studies Of Gossypol Derivatives, Carlos Zelaya May 2014

X-Ray Structure Analysis And Topological Charge Density Studies Of Gossypol Derivatives, Carlos Zelaya

University of New Orleans Theses and Dissertations

Gossypol and gossypol derivatives are natural byproducts of a variety of cotton plant species that poses interesting chemical, biological, and medicinal properties that are currently heavily researched. Supporting evidence suggest that gossypol and gossypol derivatives act on the Bcl-2 proteins that have been linked to certain cancers. Gossypol amine derivatives, specifically, are actively researched and a variety of amine derivatives have already been synthesized. However, gossypol and its derivatives are challenging compounds to work with because many of its derivatives tend to exist in various tautomeric forms. When analyzing gossypol and its derivatives it is the complex electron configuration that …


Methods For Quantitative Local Structure Analysis Of Crystalline Materials Employing High Performance Computing, Tara Marie Michels-Clark May 2014

Methods For Quantitative Local Structure Analysis Of Crystalline Materials Employing High Performance Computing, Tara Marie Michels-Clark

Doctoral Dissertations

A fundamental computational methodology was investigated to extract quantitative local structure information from single crystal diffuse scattering data. The principles of a highly efficient, parallelizable local structure analysis using massively parallel computing resources at Oak Ridge National Laboratory (ORNL) are demonstrated on an organic hydrocarbon compound containing stacking faults, Tris(bicyclo[2.1.1]hexeno)benzene. A probabilistic model of the stacking variations with a five layer interaction depth was developed. The final model structure motif statistics are verified using the steady state distribution of Markov matrix representing the four to five layer transitions. The computations revealed that highly parallelizable “structure-clones” could replace less computationally efficient …


Understanding The Plasmonic Properties Of Metallic Nanostructures With Correlated Photon- And Electron-Driven Excitations, Vighter Ozezinimize Iberi May 2014

Understanding The Plasmonic Properties Of Metallic Nanostructures With Correlated Photon- And Electron-Driven Excitations, Vighter Ozezinimize Iberi

Doctoral Dissertations

The collective oscillation of the conduction band electrons in metal nanostructures, known as plasmons, can be used to manipulate light on length scales that are smaller than the diffraction limit of visible light. In this dissertation, a correlated approach is used to probe localized surface plasmon resonances (LSPRs) in metallic nanostructures, and their application to surface-enhanced spectroscopy. This correlated approach involves the measurement of LSPRs with dark-field optical microscopy (resonance-Rayleigh scattering), and electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Structural parameters of the exact same nanostructures obtained from the STEM are subsequently used in performing fully …