Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Laser Ablation In Liquid For The Controlled Production Of Photoluminescent Graphene Quantum Dots And Upconverting Nanoparticles, Rosemary Lynn Calabro Jan 2020

Laser Ablation In Liquid For The Controlled Production Of Photoluminescent Graphene Quantum Dots And Upconverting Nanoparticles, Rosemary Lynn Calabro

Theses and Dissertations--Chemistry

Photoluminescent­ (PL) nanomaterials play an important role in areas including displays, sensing, solar, photocatalysis, and bio applications. Traditional methods to prepare PL materials suffer many drawbacks such as harsh chemical precursors, complicated synthetic steps, and production of many byproducts. Laser ablation in liquid (LAL) has emerged as a promising alternative to prepare materials that is single-step, fast, uses fewer precursors, produces fewer side products, and has simple purification steps. During LAL, a solid target is irradiated with a pulsed laser source. The laser pulses cause plasma plumes of the target material to form which are cooled, condensed, and can react …


Threshold Ionization Spectroscopy And Spin-Orbit Coupling Of Lanthanide Complexes, Yuchen Zhang Jan 2020

Threshold Ionization Spectroscopy And Spin-Orbit Coupling Of Lanthanide Complexes, Yuchen Zhang

Theses and Dissertations--Chemistry

The C-C and C-H bonds have high bond strength and low polarization, which make many small hydrocarbons too inert to react with other molecules under ambient pressure and temperature conditions. Therefore, activation of these bonds is required to convert such small molecules into other value-added chemicals. Among various bond activation methods, metal activation is widely used and reported in the literature, because of its relatively mild reaction conditions and high selectivity.

In this work, Ce atom reactions with several small hydrocarbons are carried out in a pulsed laser vaporization supersonic molecular beam source, and Ce -hydrocarbon species are observed with …


Towards The Rational Design Of Organic Semiconductors Through Computational Approaches, Qianxiang Ai Jan 2020

Towards The Rational Design Of Organic Semiconductors Through Computational Approaches, Qianxiang Ai

Theses and Dissertations--Chemistry

Though organic semiconductors have illustrated potential as industry-relevant materials for electronics applications, there are few guidelines that can take one from molecular design to functional materials. This limitation is, in part, due to incomplete understanding as to how the atomic-scale construction of the π-conjugated molecules that comprise the organic semiconductors determines the nature and strength of both the noncovalent intramolecular interactions that govern molecular conformation and noncovalent intermolecular interactions that regulate the energetic preference for solid-state packing. Hence, there remain several fundamental questions that need to be resolved in order to design organic semiconductors from a priori knowledge, including: What …


Designing Metal-Halide Perovskites With Enhanced Optical Properties And Stability Using Surface Ligands, Md Aslam Uddin Jan 2020

Designing Metal-Halide Perovskites With Enhanced Optical Properties And Stability Using Surface Ligands, Md Aslam Uddin

Theses and Dissertations--Chemistry

Metal-halide perovskites (MHPs), with formula ABX3 (A = methylammonium, formamidinium, or Cs+; B = Sn2+ or Pb2+; and X = Cl-, Br-, or I-) are versatile and attractive materials because of their tunable optical and electronic properties. These optical and electronic properties include tunable direct band gaps, high absorption coefficients, low exciton binding energies, relatively high electron and hole mobilities, narrow emission line-widths, and high photoluminescence (PL) quantum yields (ΦPL). Much of the initial excitement around organic metal-halide perovskites focused on their application in photovoltaics (PVs) …


Structure, Surface, And Interfacial Modifications Of Carbon And Supported-Metal Electrodes For Electrochemical Carbon Dioxide Conversion, Namal Wanninayake Jan 2020

Structure, Surface, And Interfacial Modifications Of Carbon And Supported-Metal Electrodes For Electrochemical Carbon Dioxide Conversion, Namal Wanninayake

Theses and Dissertations--Chemistry

Currently, the global emission of greenhouse CO2 is over 36 billion tons per year. Consequently, the atmosphere's CO2 concentrations have exceeded 400 ppm, which is the highest reported in the last three million years. The accumulation of CO2 is the most critical origin for today's climate change; thus, closing the carbon cycle is vital to reverse the detrimental impacts of climate change. Under this goal, the electrochemical reduction of CO2 into commodity fuels and chemicals via renewable energy is one of the most promising strategies to recycle CO2. Despite significant progress made in electrocatalysis, …


Multiscale Modeling Of Structure-Function Relationships Of Organic Semiconductors, Shi Li Jan 2020

Multiscale Modeling Of Structure-Function Relationships Of Organic Semiconductors, Shi Li

Theses and Dissertations--Chemistry

While optoelectronic devices built from organic semiconductors (OSC) continue to find their way into the commercial landscape, there remain numerous challenges to overcome to supplant traditional semiconductors in many technologies. Chief among these are low performance metrics relative to devices with conventional semiconductors and device stability. In order to overcome these challenges, a wide range of new OSC and processing technologies have been developed. However, there remains limited fundamental understanding of the relationship between molecular structure, packing in the solid state, and the resulting materials properties. Here, we make use of multiscale molecular models and utilize classical all-atom molecular dynamic …