Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Chemistry

Predicting The Hydration Free Energy Of Small Alkanes And Alcohols From Custom, Electronic Structure-Based Force Fields, T. Ryan Rogers Dec 2020

Predicting The Hydration Free Energy Of Small Alkanes And Alcohols From Custom, Electronic Structure-Based Force Fields, T. Ryan Rogers

Graduate Theses and Dissertations

Mathematical theories reveal the fundamental physics involved in experimentalphenomena. Computer models of such theories are routinely used to corroborate or explain experiments and predict properties of chemical systems. Therefore, an important effort in computational chemistry is the development of more accurate and efficient chemical models. Current-generation models are only beginning to approach experimental-quality predictions of hydration free energies (HFEs).Using computations of quantum mechanical (QM) forces and classical simulations based on these forces, I investigate models to predict several properties of solutes and solutions. This dissertation is a collection of projects exemplifying methods used to gain insight into chemical systems.

Simulations …


An Experimental Investigation Of Liquid Hydrocarbons In A Simulated Titan Environment, Kendra Farnsworth Jul 2020

An Experimental Investigation Of Liquid Hydrocarbons In A Simulated Titan Environment, Kendra Farnsworth

Graduate Theses and Dissertations

Saturn’s moon, Titan, has surface conditions (89–94 K, 1.5-bar atmosphere) that permit lakes of methane, ethane, and dissolved atmospheric nitrogen. The effects of atmospheric nitrogen on methane-ethane liquid properties is poorly understood, leading to uncertainty in Titan modeling. I address this question by experimentally investigating the physical properties of methane-ethane liquids under a 1.5-bar nitrogen atmosphere in a simulated Titan environmental chamber.

Chapter 1 addresses nitrogen dissolution kinetics in Titan’s liquid hydrocarbons. I found an exponential increase in nitrogen quantity and diffusion coefficients with increasing methane mol%. I find that Titan’s liquids are likely not saturated in nitrogen, with dissolution …


Ensemble And Single Particle Studies Of Cation Exchange In Cuins2/Zns Qds And Their Application In Super-Resolution Imaging, Anh Tue Nguyen Jul 2020

Ensemble And Single Particle Studies Of Cation Exchange In Cuins2/Zns Qds And Their Application In Super-Resolution Imaging, Anh Tue Nguyen

Graduate Theses and Dissertations

Colloidal quantum dots (QDs) have great potential in many applications such as bioimaging, light emitting diodes, solar cells and lasers. However, a great number of studies have been focused on Cd based (II-VI) and Pb (IV-VI) based materials which are not suitable for mass production. Therefore, alternative types of QD containing less toxic materials have been introduced, including CuInS2 QDs. This I-III-VI semiconductor nanocrystals also attract lots of attention due to their large Stock shift, long fluorescence lifetime and high defect tolerance, making them attractive emitters for applications in bioimaging, photovoltaics and light emitting diodes.

In the first project, we …


Understanding Ice Mixtures Under Pluto Simulated Conditions And Their Implications For Geophysical Processes, Caitlin Joannah Ahrens May 2020

Understanding Ice Mixtures Under Pluto Simulated Conditions And Their Implications For Geophysical Processes, Caitlin Joannah Ahrens

Graduate Theses and Dissertations

New Horizons at Pluto has given the planetary science community the first images of Pluto’s surface, including geologic wonders and compositional variability. Methane, nitrogen, and carbon monoxide make up the bulk of the volatile plutonian surface along with water ice. In this work, these three main volatiles are specifically investigated in the laboratory setting to understand the spectral properties and behavior of binary and ternary mixtures. The spectra are taken in the near-infrared wavelengths (1 – 2.5 µm) using Fourier transform infrared (FTIR) spectroscopy techniques utilizing the Pluto Simulation Chamber housed at the University of Arkansas, which can reach conditions …