Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Mitochondrial Energetics With Transmembrane Electrostatically Localized Protons: Do We Have A Thermotrophic Feature?, James Weifu Lee Jan 2021

Mitochondrial Energetics With Transmembrane Electrostatically Localized Protons: Do We Have A Thermotrophic Feature?, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Transmembrane electrostatically localized protons (TELP) theory has been recently recognized as an important addition over the classic Mitchell’s chemiosmosis; thus, the proton motive force (pmf) is largely contributed from TELP near the membrane. As an extension to this theory, a novel phenomenon of mitochondrial thermotrophic function is now characterized by biophysical analyses of pmf in relation to the TELP concentrations at the liquid-membrane interface. This leads to the conclusion that the oxidative phosphorylation also utilizes environmental heat energy associated with the thermal kinetic energy (kBT) of TELP in mitochondria. The local pmf is now calculated to be in …


Energy Renewal: Isothermal Utilization Of Environmental Heat Energy With Asymmetric Structures, James Weifu Lee Jan 2021

Energy Renewal: Isothermal Utilization Of Environmental Heat Energy With Asymmetric Structures, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Through the research presented herein, it is quite clear that there are two thermodynamically distinct types (A and B) of energetic processes naturally occurring on Earth. Type A, such as glycolysis and the tricarboxylic acid cycle, apparently follows the second law well; Type B, as exemplified by the thermotrophic function with transmembrane electrostatically localized protons presented here, does not necessarily have to be constrained by the second law, owing to its special asymmetric function. This study now, for the first time, numerically shows that transmembrane electrostatic proton localization (Type-B process) represents a negative entropy event with a local protonic entropy …