Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin Mar 2024

Mechanistic Investigation Of C—C Bond Activation Of Phosphaalkynes With Pt(0) Complexes, Roberto M. Escobar, Abdurrahman C. Ateşin, Christian Müller, William D. Jones, Tülay Ateşin

Research Symposium

Carbon–carbon (C–C) bond activation has gained increased attention as a direct method for the synthesis of pharmaceuticals. Due to the thermodynamic stability and kinetic inaccessibility of the C–C bonds, however, activation of C–C bonds by homogeneous transition-metal catalysts under mild homogeneous conditions is still a challenge. Most of the systems in which the activation occurs either have aromatization or relief of ring strain as the primary driving force. The activation of unstrained C–C bonds of phosphaalkynes does not have this advantage. This study employs Density Functional Theory (DFT) calculations to elucidate Pt(0)-mediated C–CP bond activation mechanisms in phosphaalkynes. Investigating the …


Td-Dft Spin-Adiabats With Analytic Nonadiabatic Derivative Couplings, Nicole Bellonzi, Ethan Alguire, Shervin Fatehi, Yihan Shao, Joseph E. Subotnik Jan 2020

Td-Dft Spin-Adiabats With Analytic Nonadiabatic Derivative Couplings, Nicole Bellonzi, Ethan Alguire, Shervin Fatehi, Yihan Shao, Joseph E. Subotnik

Chemistry Faculty Publications and Presentations

We present an algorithm for efficient calculation of analytic nonadiabatic derivative couplings between spin-adiabatic, time-dependent density functional theory states within the Tamm-Dancoff approximation. Our derivation is based on the direct differentiation of the Kohn-Sham pseudowavefunction using the framework of Ou et al. Our implementation is limited to the case of a system with an even number of electrons in a closed shell ground state, and we validate our algorithm against finite difference at an S1/T2 crossing of benzaldehyde. Through the introduction of a magnetic field spin-coupling operator, we break time-reversal symmetry to generate complex valued nonadiabatic derivative …


The Requisite Electronic Structure Theory To Describe Photoexcited Nonadiabatic Dynamics: Nonadiabatic Derivative Couplings And Diabatic Electronic Couplings, Joseph E. Subotnik, Ethan Alguire, Qi Ou, Brian R. Landry, Shervin Fatehi May 2015

The Requisite Electronic Structure Theory To Describe Photoexcited Nonadiabatic Dynamics: Nonadiabatic Derivative Couplings And Diabatic Electronic Couplings, Joseph E. Subotnik, Ethan Alguire, Qi Ou, Brian R. Landry, Shervin Fatehi

Chemistry Faculty Publications and Presentations

Conspectus

Electronically photoexcited dynamics are complicated because there are so many different relaxation pathways: fluorescence, phosphorescence, radiationless decay, electon transfer, etc. In practice, to model photoexcited systems is a very difficult enterprise, requiring accurate and very efficient tools in both electronic structure theory and nonadiabatic chemical dynamics. Moreover, these theoretical tools are not traditional tools. On the one hand, the electronic structure tools involve couplings between electonic states (rather than typical single state energies and gradients). On the other hand, the dynamics tools involve propagating nuclei on multiple potential energy surfaces (rather than the usual ground state dynamics).

In this …


Multiple-Time Step Ab Initio Molecular Dynamics Based On Two-Electron Integral Screening, Shervin Fatehi, Ryan P. Steele Jan 2015

Multiple-Time Step Ab Initio Molecular Dynamics Based On Two-Electron Integral Screening, Shervin Fatehi, Ryan P. Steele

Chemistry Faculty Publications and Presentations

A multiple-timestep ab initio molecular dynamics scheme based on varying the two-electron integral screening method used in Hartree–Fock or density functional theory calculations is presented. Although screening is motivated by numerical considerations, it is also related to separations in the length- and timescales characterizing forces in a molecular system: Loose thresholds are sufficient to describe fast motions over short distances, while tight thresholds may be employed for larger length scales and longer times, leading to a practical acceleration of ab initio molecular dynamics simulations. Standard screening approaches can lead, however, to significant discontinuities in (and inconsistencies between) the energy and …


Analysis Of Localized Diabatic States Beyond The Condon Approximation For Excitation Energy Transfer Processes, Ethan Alguire, Shervin Fatehi, Yihan Shao, Joseph E. Subotnik Jan 2014

Analysis Of Localized Diabatic States Beyond The Condon Approximation For Excitation Energy Transfer Processes, Ethan Alguire, Shervin Fatehi, Yihan Shao, Joseph E. Subotnik

Chemistry Faculty Publications and Presentations

In a previous paper [Fatehi, S.; et al. J. Chem. Phys. 2013, 139, 124112], we demonstrated a practical method by which analytic derivative couplings of Boys-localized CIS states can be obtained. In this paper, we now apply that same method to the analysis of triplet–triplet energy transfer systems studied by Closs and collaborators [Closs, G. L.; et al. J. Am. Chem. Soc.1988, 110, 2652]. For the systems examined, we are able to conclude that (i) the derivative coupling in the BoysOV basis is negligible, and (ii) the diabatic coupling will likely change little over the configuration space explored …


Derivative Couplings With Built-In Electron-Translation Factors: Application To Benzene, Shervin Fatehi, Joseph E. Subotnik Jul 2012

Derivative Couplings With Built-In Electron-Translation Factors: Application To Benzene, Shervin Fatehi, Joseph E. Subotnik

Chemistry Faculty Publications and Presentations

Derivative couplings are the essential quantities at the interface between electronic-structure calculations and nonadiabatic dynamics. Unfortunately, standard approaches for calculating these couplings usually neglect electronic motion, which can lead to spurious electronic transitions. Here we provide a general framework for correcting these anomalies by incorporating perturbative electron-translation factors (ETFs) into the atomic-orbital basis. For a range of representative organic molecules, we find that our ETF correction is often small but can be qualitatively important, especially for few-atom systems or highly symmetric molecules. Our method entails no additional computational cost, such that ETFs are “built-in,” and it is equivalent to a …