Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 40

Full-Text Articles in Chemistry

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave Feb 2024

Rational Design Of Peptide-Based Materials Informed By Multiscale Molecular Dynamics Simulations, Dhwanit Rahul Dave

Dissertations, Theses, and Capstone Projects

The challenge of establishing a sustainable and circular economy for materials in medicine and technology necessitates bioinspired design. Nature's intricate machinery, forged through evolution, relies on a finite set of biomolecular building blocks with through-bond and through-space interactions. Repurposing these molecular building blocks requires a seamless integration of computational modeling, design, and experimental validation. The tools and concepts developed in this thesis pioneer new directions in peptide-materials design, grounded in fundamental principles of physical chemistry. We present a synergistic approach that integrates experimental designs and computational methods, specifically molecular dynamics simulations, to gain in-depth molecular insights crucial for advancing the …


Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler Sep 2023

Quantifying Temperature-, Pressure-, And Nuclear Quantum Effects On Hydrophobic And Hydrophilic Water-Mediated Interactions, Justin T. Engstler

Dissertations, Theses, and Capstone Projects

Water-mediated interactions (WMIs) are responsible for diverse processes in aqueous solutions, including protein folding and nanoparticle aggregation. WMI may be affected by changes in temperature and pressure, and hence, they can alter chemical/physical processes that occur in aqueous environments. Traditionally, attention has been focused on hydrophobic interactions while, in comparison, the role of hydrophilic and hybrid (hydrophobic–hydrophilic) interactions have been mostly overlooked. Here, we study the role of T and P on the WMI between nanoscale (i) hydrophobic–hydrophobic, (ii) hydrophilic–hydrophilic, and (iii) hydrophilic–hydrophobic pairs of (hydroxylated/non-hydroxylated) graphene-based surfaces. We find that hydrophobic, hydrophilic, and hybrid interactions are all sensitive to …


Sers For The Detection Of Trace Materials, Omari Kirkland Jun 2023

Sers For The Detection Of Trace Materials, Omari Kirkland

Dissertations, Theses, and Capstone Projects

In this dissertation are presented three projects that contribute to the body of research on SERS in the forensic, heritage, and semiconductor fields. The first project, Charge-Transfer mapping on GaN/Ag, a silver-decorated nanopillar semiconductor substrate fabricated from the GaN is used with the Raman probe Rhodamine 6 G (R6G) to map the effect of the nanofeatures on the CT resonance. The second project, in collaboration with Marco Leona from the Metropolitan Museum of Art, explores the use of AgNIFs to identify colorants used on textile fiber samples from four 19th century works of Japanese art. The final project analyzes the …


A Typological And Chemical Analysis Of Roman Oil Lamps From Poggio Del Molino, Brandon Tejo Jun 2023

A Typological And Chemical Analysis Of Roman Oil Lamps From Poggio Del Molino, Brandon Tejo

Dissertations, Theses, and Capstone Projects

Terracotta lamps, known to the Romans as lucernae, are small, handheld, often decorated objects which provided ancient people light. To modern researchers, they serve as tools for dating stratigraphy and iconographic studies. Beyond their immediately apparent aesthetic and symbolic value, the chemical compositions of the clay of these lamps reflect their origin. This study complements archaeological typologies with chemometric analyses to describe 16 Late Republican and Imperial Roman lamps recovered from the villa at Poggio del Molino (PdM), Tuscany. These finds were recovered from the 2021 and 2022 PdM excavations. The combined approach of typology with X-ray Diffraction (XRD) …


Nanoscale Imaging Of Electrocatalytic Nanomaterials By High-Resolution Scanning Electrochemical Microscopy, Xiang Wang Feb 2023

Nanoscale Imaging Of Electrocatalytic Nanomaterials By High-Resolution Scanning Electrochemical Microscopy, Xiang Wang

Dissertations, Theses, and Capstone Projects

Numerous insights of the structure–electrochemical activity relationship of nanocatalysts have been obtained by using macroscopic electrochemical measurements over the last several decades. However, signals measured by large electrodes are inevitably averaged out of many nanocatalysts, non-uniformed sizes, uneven morphologies, and multiple crystallographic facets. Over the last ten years, Scanning Electrochemical Microscopy (SECM) has advanced electrochemical measurements toward micro- to nanoscale level at a high spatial resolution. The advantages of using nanoelectrode in SECM include fast mass transfer of reactive species, dominated radial diffusion pattern, small double layer capacitance and small RC constant. In this thesis, high-resolution SECM is applied to …


Sensitized Photooxidation Of Prenylated Compounds: Mechanisms Of Downstream Dark Effects And Phototoxicity Priming, Shakeela Jabeen Sep 2022

Sensitized Photooxidation Of Prenylated Compounds: Mechanisms Of Downstream Dark Effects And Phototoxicity Priming, Shakeela Jabeen

Dissertations, Theses, and Capstone Projects

This thesis consists of four chapters as detailed below.

Chapter 1 discusses a singlet oxygen priming mechanism. Airborne singlet oxygen derived from photosensitization of triplet dioxygen is shown to react with an alkene surfactant (8-methylnon-7-ene-1 sulfonate) leading to ‘ene’ hydroperoxides that in the dark inactivate planktonic E. coli. The ‘ene’ hydroperoxide photoproducts are not toxic on their own, but they become toxic after the bacteria are pretreated with singlet oxygen. The total quenching rate constant (kT) of singlet oxygen of the alkene surfactant was measured to be 1.1 × 106 M1 s− …


Physical Chemistry, Ruth E. Stark Oct 2021

Physical Chemistry, Ruth E. Stark

Open Educational Resources

This is a provisional syllabus for Physical Chemistry I (Thermodynamics), to be taught using an OER Textmap in Fall, 2021.


Automated Code Engine For Tensor Hypercontraction: Derivation, Optimization And Implementation Of Rank-Reduced Coupled Cluster Theories, Yao Zhao Sep 2021

Automated Code Engine For Tensor Hypercontraction: Derivation, Optimization And Implementation Of Rank-Reduced Coupled Cluster Theories, Yao Zhao

Dissertations, Theses, and Capstone Projects

The ultimate goal of electronic structure theory is solving the electronic Schr¨odinger Equation. However, even accurate approximations of solving Schr¨odinger Equation, such as high order coupled cluster theories, require computational efforts that are too demanding to be applied on large chemical systems. This thesis tackles the problem of curse of dimensionality: how to reduce the time complexity of high-accuracy coupled cluster methods in order to accelerate computations of molecular energy. On one hand, we believe that low-rank approximation (i.e. Tensor HyperContraction) of high-order tensors appearing in coupled cluster theory is a promising way to achieve rank-reduced coupled cluster theory. On …


Photosensitization And Analytical Study On Reactive Oxygen Intermediates: Self-Sorting Surface Radicals And “On-Off” Sensitizer Function Mechanisms, Sarah J. Belh Jun 2021

Photosensitization And Analytical Study On Reactive Oxygen Intermediates: Self-Sorting Surface Radicals And “On-Off” Sensitizer Function Mechanisms, Sarah J. Belh

Dissertations, Theses, and Capstone Projects

This thesis consists of four chapters which are detailed below. Chapter 1 is an introductory chapter, which lays out the background and purpose of the research.

Chapter 2 describes a study of the mobility of alkoxy radicals on a surface by detection of their recombination product. A novel method called symmetrical product recombination (SRP) utilizes an unsymmetrical peroxide that upon sensitized homolysis recombines to a symmetrical product [R'OOR → R'O•↑ + •OR → ROOR]. This allows for self-sorting of the radical to enhance the recombination path to a symmetrical product, which has been used to deduce surface migratory aptitude. SPR …


Computational Modeling Of Water And Proteins In Drug Discovery, Anthony Cruz Balberdy Jun 2021

Computational Modeling Of Water And Proteins In Drug Discovery, Anthony Cruz Balberdy

Dissertations, Theses, and Capstone Projects

This thesis aims to improve how structural and thermodynamic properties of water on protein surfaces can be exploited to aid early stage drug discovery and lead optimization. We first discuss our development of SSTMap, a public domain software suite that maps out the properties of water on biomolecular surfaces. We then show the utility of these maps in describing differences in binding affinities between congeneric pairs of ligands. We then discuss our use of solvation maps in the prospective discovery of novel binders to cytochrome C peroxidase. Finally, we present our creation and validation of a homology model of Interleukin-24 …


Comparison Of Calculated Normal Mode Molecular Vibrations With Experimental Gas-Phase Infrared Spectroscopy, Anila Renis Sutar Jan 2021

Comparison Of Calculated Normal Mode Molecular Vibrations With Experimental Gas-Phase Infrared Spectroscopy, Anila Renis Sutar

Dissertations and Theses

Computational vibrational spectroscopy serves as an important tool in the interpretation of experimental infrared (IR) spectra. Analysis of computational results provides a perspective over broader wavelength ranges and at higher precision. Although there are issues regarding accuracy, this can be approximated by using a scaling factor. High-resolution gas-phase FTIR spectroscopy at a resolution of 0.125 cm-1 can partially resolve rovibrational transitions in the P, Q, and R bands and therefore identify fundamental frequencies with approximately 1 cm-1 precision.

This research has compared high-resolution gas-phase FTIR absorption peaks to calculated vibrational frequencies. In the calculation of normal mode frequencies, …


The Statue Of Liberty Laboratory Activity: The Chemistry Of Copper, Jihyun Kim, Marcus D. Allen Sep 2020

The Statue Of Liberty Laboratory Activity: The Chemistry Of Copper, Jihyun Kim, Marcus D. Allen

Open Educational Resources

In this lab activity we observe chemical changes of copper in acidic conditions, salt water, and a mixture of lemon juice and vinegar and salt, and we discuss whether the Statue of Liberty would hold as much cultural icon today had the Lady Statue remain the original shiny brown color.


Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen Feb 2020

Computational Modeling Of Charge And Excitation Energy Transfer Dynamics In Complex Environments, Ning Chen

Dissertations, Theses, and Capstone Projects

This thesis describes computational simulations of charge and exciton dynamics and quantum calculations of organic conjugated oligomers. A comprehensive computational study of charge hopping dynamics was conducted for a model of disordered chain of sites coupled to quantum environments. Time-dependent mean square displacement, diffusion constant, and mobility were calculated by three different computational methods for solving the master equation, which validate the accuracy of calculations. Approximate rate kernels were also tested to understand the effects of approximations in representing quantum environments. In addition to the effects of temperature and disorder, different values of the gradient in the site energy were …


Study Of Reaction Dynamics Of Protonated/Deprotonated And Radical Cations Of Guanine In Nucleobases And Nucleosides: Singlet Oxygen Oxidation, C8-Water Addition, Cross-Linking With Lysine And Base-Pair Dissociation, Yan Sun Feb 2020

Study Of Reaction Dynamics Of Protonated/Deprotonated And Radical Cations Of Guanine In Nucleobases And Nucleosides: Singlet Oxygen Oxidation, C8-Water Addition, Cross-Linking With Lysine And Base-Pair Dissociation, Yan Sun

Dissertations, Theses, and Capstone Projects

Among the four DNA nucleobases, guanine (G) has the lowest oxidation potential and represents a preferential target for oxidation and ionization. This leads to the formation of guanine radical cation (G•+) in various oxidative environments. Of the biologically relevant oxidants, electronically excited singlet oxygen (1O2) exclusively damages the guanine bases and gives rise to mutagenesis, DNA-protein cross-linking and cellular death. Combining our home-made electrospray ionization (ESI) guided-ion-beam tandem mass spectrometer, with reaction potential surface calculations and kinetics modeling, five projects have been accomplished as described below.

In project 1, the reactions of deuterated water …


Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine …


Synthesis And Characterization Of Multifunctional Transition Metal Oxide Nanoparticles Through A Modified Sol-Gel Method With Application In Energy Storage, Julien Lombardi Sep 2019

Synthesis And Characterization Of Multifunctional Transition Metal Oxide Nanoparticles Through A Modified Sol-Gel Method With Application In Energy Storage, Julien Lombardi

Dissertations, Theses, and Capstone Projects

The Synthesis of transition metal oxide nanoparticles has been studied in great detail over the many years. The most studied transition metal oxide nanoparticles are perovskites of the ABO3 stoichiometry (A and B = transition metal) and more recently double perovskite crystal structures of the AA’BO6 or A2BB’O6 stoichiometry due to the many different properties arising from the many different combinations of elements possible. These materials have proven potentially useful in many fields, but due to properties such as ferroelectricity and ferromagnetism, the desire to integrate these materials into electronics is ever growing. Many synthesis …


Peptide Mediated Co-Assembly Of Porphyrin: Towards Sustainable Biomaterials For Light Harvesting And Catalysis, Wsm Nadeesha K. Wijerathne May 2019

Peptide Mediated Co-Assembly Of Porphyrin: Towards Sustainable Biomaterials For Light Harvesting And Catalysis, Wsm Nadeesha K. Wijerathne

Dissertations, Theses, and Capstone Projects

The diverse molecular functions of naturally occurring biomaterials designed from proteins are fundamentally based on a set of conserved building blocks, namely the 20 gene coded amino acids. The supramolecular structures and functions of proteins dictates by the self-assembly, where the complexity of proteins arise from a large number of amino acids. Generation of biomimetic systems that resemble the structures and functions of proteins is of great interest yet challenging due to the tremendous complexity of the natural systems. It is important to investigate alternative strategies to design much simpler systems that exhibit the same or similar function as proteins. …


Extraction Of Acids And Bases From Aqueous Phase To A Pseudoprotic Ionic Liquid, Nikolas Patsos, Karin Lewis, Francesco Picchioni, Mark N. Kobrak Mar 2019

Extraction Of Acids And Bases From Aqueous Phase To A Pseudoprotic Ionic Liquid, Nikolas Patsos, Karin Lewis, Francesco Picchioni, Mark N. Kobrak

Publications and Research

We report experiments on the extraction of acids and bases from an aqueous phase to a pseudoprotic ionic liquid phase consisting of an equimolar mixture of trihexylamine and octanoic acid. We observed the extraction of a wide range of acids and bases, and investigated the mechanism of extraction in detail. Our results confirmed the observation of the Hofmeister effect in these systems reported in our previous work, where the extent of the extraction of copper salts was significantly influenced by the interactions between extracted inorganic anions and the organic phase. Our results further demonstrated that the organic layer served as …


Solvation Thermodynamic Mapping In Computer Aided Drug Design, Steven Ramsey Feb 2019

Solvation Thermodynamic Mapping In Computer Aided Drug Design, Steven Ramsey

Dissertations, Theses, and Capstone Projects

The displacement of water from surfaces upon biomolecular recognition and association makes a significant contribution to the free energy changes of these processes. We therefore posit that accurate characterization of local structural and thermodynamic molecular water properties can improve computational model accuracy and predictivity of recognition and association processes. In this thesis, we discuss Solvation Thermodynamic Mapping (STM) methods that we have developed using inhomogeneous fluid solvation theory (IST) to better characterize active site water structural and thermodynamic properties on protein surfaces and the open source tools that we have developed, GIST-CPPTRAJ and SSTMap, which implement these methods which we …


Minimalistic Supramolecular Proteoglycan Mimics By Co-Assembly Of Aromatic Peptide And Carbohydrate Amphiphiles, Alexandra Brito, Yousef M. Abul-Haija, Diana Soares De Costa, Ramon Novoa-Carballal, Rui L. Reis, Rein V. Ulijn, Ricardo A. Pires, Iva Pashkuleva Jan 2019

Minimalistic Supramolecular Proteoglycan Mimics By Co-Assembly Of Aromatic Peptide And Carbohydrate Amphiphiles, Alexandra Brito, Yousef M. Abul-Haija, Diana Soares De Costa, Ramon Novoa-Carballal, Rui L. Reis, Rein V. Ulijn, Ricardo A. Pires, Iva Pashkuleva

Advanced Science Research Center

We report the co-assembly of aromatic carbohydrate and dipeptide amphiphiles under physiological conditions as a strategy to generate minimalistic proteoglycan mimics. The resulting nanofibers present a structural, fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) core and a functional carbohydrate (Fmoc-glucosamine-6-sulfate or -phosphate) shell. The size, degree of bundling and mechanical properties of the assembled structures depend on the chemical nature of the carbohydrate amphiphile used. In cell culture medium, these nanofibers can further organize into supramolecular hydrogels. We demonstrate that, similar to proteoglycans, the assembled gels prolong the stability of growth factors and preserve the viability of cultured cells. Our results demonstrate that this approach …


Nuclear Magnetic Resonance Studies Of Imidazolium-Based Ionic Liquids And Garnet-Type Li7la3zr2o12, Shen Lai Sep 2018

Nuclear Magnetic Resonance Studies Of Imidazolium-Based Ionic Liquids And Garnet-Type Li7la3zr2o12, Shen Lai

Dissertations, Theses, and Capstone Projects

Advancements in electrochemical energy storage materials are critical in the development and utilization of renewable energy technologies. These advancements involve obtaining a better understanding of electrochemical mechanisms and properties through scientific research towards an improved energy storage technology. Nuclear magnetic resonance (NMR), is a sensitive and selective method to probe particle dynamics (magnetic relaxation, diffusometry, etc.) and material structures (spectroscopy) down to the atomic level. In this work, several NMR techniques are employed to study imidazolium-based ionic liquids and garnet-type inorganic materials. These are being studied due to their potential use as safer alternatives to organic solvent-based electrolytes in lithium-ion …


Singlet Oxygen Oxidation Of Guanine, 9-Methylguanine And Guanine-Cytosine Base Pair: Dynamics And Kinetics Revealed By Parallel Gas- And Solution-Phase Experiments And Computations, Wenchao Lu May 2018

Singlet Oxygen Oxidation Of Guanine, 9-Methylguanine And Guanine-Cytosine Base Pair: Dynamics And Kinetics Revealed By Parallel Gas- And Solution-Phase Experiments And Computations, Wenchao Lu

Dissertations, Theses, and Capstone Projects

Singlet oxygen (1O2) oxidatively generated damage of DNA gives rise to mutagenesis, carcinogenesis, and cellular death. Guanine is the most susceptible DNA target of 1O2. The related process has been studied over three decades but the mechanism has remained elusive. My thesis research has focused on reaction mechanism, dynamics and kinetics of 1O2 oxidation of guanine, 9-methylguanine and guanine-cytosine base pair, from the gas-phase bare ions, through hydrated clusters, to aqueous solution. Various techniques have been adapted in the work, including 1O2 generation and detection, guided-ion beam tandem mass …


Investigation Of Novel Electrolytes For Use In Lithium-Ion Batteries And Direct Methanol Fuel Cells, Kartik Pilar Feb 2018

Investigation Of Novel Electrolytes For Use In Lithium-Ion Batteries And Direct Methanol Fuel Cells, Kartik Pilar

Dissertations, Theses, and Capstone Projects

Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite …


Organic Photochemistry: Remote Delivery Of Reactive Oxygen Intermediates Via A Heterogeneous Approach, Niluksha Walalawela Abeykoon Feb 2018

Organic Photochemistry: Remote Delivery Of Reactive Oxygen Intermediates Via A Heterogeneous Approach, Niluksha Walalawela Abeykoon

Dissertations, Theses, and Capstone Projects

Photosensitized oxidation reactions produce a number of intermediates species, which are generated in varying amounts over time. This complexity presents major challenges in the study of oxidation processes. Mechanistic efforts to separate and deliver reactive oxygen intermediates enable their controlled use in processes such as bacterial inactivation. This thesis describes a heterogeneous reaction approach taken to control the generation and delivery of reactive oxygen intermediates. The mechanistic details of photosensitized reactions were elucidated via synthetic, materials, and physical organic techniques to optimize the delivery of reactive oxygen intermediates. This thesis contains six chapters as described below.

Chapter 1 gives a …


Photodynamic Killing Of Human Cancer Cells With Smart Photosensitizer Materials And An Endoscopic Implement For Singlet Oxygen Delivery, Mihaela N. Minnis Sep 2016

Photodynamic Killing Of Human Cancer Cells With Smart Photosensitizer Materials And An Endoscopic Implement For Singlet Oxygen Delivery, Mihaela N. Minnis

Dissertations, Theses, and Capstone Projects

The thesis describes progress on probe tips for a microoptic device for the precise delivery of the components necessary for photodynamic therapy (PDT) in a highly localized and controllable fashion. The thesis also summarizes results of a photosensitized oxidation study. The work focused on i) developing a photoactive fluoropolymer surface that will release sensitizer drug molecule for use in PDT, ii) designing new probe tips surfaces for use as sensitizer support for a microoptic PDT device, iii) exploring strategies for covalent attachment of sensitizers and model compounds to Teflon/PVA surfaces with the aim of being coupled with our microoptic device, …


Probing The Structure And Photophysics Of Porphyrinoid Systems For Functional Materials, Christopher D. Farley Sep 2016

Probing The Structure And Photophysics Of Porphyrinoid Systems For Functional Materials, Christopher D. Farley

Dissertations, Theses, and Capstone Projects

Porphyrins (Pors) and their many cousins, including phthalocyanines (Pcs), corroles (Cors), subphthalocyanines (SubPcs), porphyrazines (Pzs), and naphthalocyanines (NPcs), play amazingly diverse roles in biological and non-biological systems because of their unique and tunable physical and chemical properties. These compounds, collectively known as porphyrinoids, can be employed in any number of functional devices that have the potential to address the challenges of modern society. Their incorporation into such devices, however, depends on many structural factors that must be well understood and carefully controlled in order to achieve the desired behavior. Self-assembly and self-organization are key processes for developing these new technologies, …


Nmr Studies Of Electrochemical Energy Storage Materials, Jing Peng Sep 2016

Nmr Studies Of Electrochemical Energy Storage Materials, Jing Peng

Dissertations, Theses, and Capstone Projects

Electrochemical energy storage materials constitute essential elements in the development of sustainable energy technologies. They are crucial for improving the efficiency of energy storage devices to facilitate the use of renewable resources. The increasing human demands for energy and limitation of fossil fuel stimulates the continued development of energy storage materials. Better understanding of their working mechanisms and electrochemical properties from a view of chemistry is quite necessary for improving the energy storage technology. In this work, Nuclear Magnetic Resonance (NMR) has been used as a powerful tool to characterize the solvation behavior and diffusion ability of some commonly used …


A Direct Mechanism Of Ultrafast Intramolecular Singlet Fission In Pentacene Dimers, Eric G. Fuemmeler, Samuel N. Sanders, Andrew B. Pun, Elango Kumarasamy, Tao Zeng, Kiyoshi Miyata, Michael L. Steigerwald, X.-Y. Zhu, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth May 2016

A Direct Mechanism Of Ultrafast Intramolecular Singlet Fission In Pentacene Dimers, Eric G. Fuemmeler, Samuel N. Sanders, Andrew B. Pun, Elango Kumarasamy, Tao Zeng, Kiyoshi Miyata, Michael L. Steigerwald, X.-Y. Zhu, Matthew Y. Sfeir, Luis M. Campos, Nandini Ananth

Publications and Research

Interest in materials that undergo singlet fission (SF) has been catalyzed by the potential to exceed the Shockley–Queisser limit of solar power conversion efficiency. In conventional materials, the mechanism of SF is an intermolecular process (xSF), which is mediated by charge transfer (CT) states and depends sensitively on crystal packing or molecular collisions. In contrast, recently reported covalently coupled pentacenes yield ∼2 triplets per photon absorbed in individual molecules: the hallmark of intramolecular singlet fission (iSF). However, the mechanism of iSF is unclear. Here, using multireference electronic structure calculations and transient absorption spectroscopy, we establish that iSF can occur via …


Self-Assembly Of Gold Supraparticles With Crystallographically Aligned And Strongly Coupled Nanoparticle Building Blocks For Sers And Photothermal Therapy, S. Paterson, S. A. Thompson, J. Gracie, A. W. Wark, R. De La Rica Jan 2016

Self-Assembly Of Gold Supraparticles With Crystallographically Aligned And Strongly Coupled Nanoparticle Building Blocks For Sers And Photothermal Therapy, S. Paterson, S. A. Thompson, J. Gracie, A. W. Wark, R. De La Rica

Publications and Research

A new method is introduced for self-assembling citrate-capped gold nanoparticles into supraparticles with crystallographically aligned building blocks. It consists in confining gld nanoparticles inside a cellulose acetate membrane. The constituent nanoparticles are in close contact in the superstructure, and therefore generate hot spots leading to intense Surface-Enhanced Raman Scattering (SERS) signals. They also generate more plasmonic heat than the nanoparticle building blocks. The supraparticles are internalized by cells and show low cytotoxicity, but can kill cancer cells when irradiated with a laser. This, along with the improved plasmonic properties arising from their assembly, makes the gold supraparticles promising materials for …


Hybrid Sol–Gel Glasses With Glass-Transition Temperatures Below Room Temperature, Andrei Jitianu, Guadalupe Gonzalez, Lisa C. Klein Dec 2015

Hybrid Sol–Gel Glasses With Glass-Transition Temperatures Below Room Temperature, Andrei Jitianu, Guadalupe Gonzalez, Lisa C. Klein

Publications and Research

Melting gels are hybrid gels that have the ability to soften and flow at around 100 ° C for some combinations of mono- and di-substituted alkoxysiloxanes, where substitutions are either all aromatic or all aliphatic. In this study, melting gels were prepared using phenyltriethoxysilane (PhTES) and dimethyldiethoxysilane (DMDES), meaning both an aromatic and aliphatic substitution. Differential scanning calorimetry was performed to identify glass-transition temperatures, and thermal gravimetric analysis coupled with differential thermal analysis (TGA-DTA) was performed to measure weight loss. The glass-transition temperatures ( T g ) ranged from – 61 ° C to + 5.6 ° C, which are …