Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Chemistry

Development Of A Methodology For The Quantification Of Reaerosolization Of A Biological Contaminate Surrogate Particle From A Military Uniform Fabric, George Cooksey, Jeremy M. Slagley, Casey W. Cooper, Douglas Lewis, Alisha Helm Dec 2023

Development Of A Methodology For The Quantification Of Reaerosolization Of A Biological Contaminate Surrogate Particle From A Military Uniform Fabric, George Cooksey, Jeremy M. Slagley, Casey W. Cooper, Douglas Lewis, Alisha Helm

Faculty Publications

In a mass casualty medical evacuation after a bioaerosol (BA) dispersal event, a decontamination (DC) method is needed that can both decontaminate and prevent biological particle (BP) re-aerosolization (RA) of contaminated clothes. However, neither the efficacy of current DC methods nor the risk of BP RA is greatly explored in the existing literature. The goals of this study were to develop a repeatable method to quantify the RA of a biological contaminant off military uniform fabric swatches and to test the efficacy of one DC protocol (high-volume, low-pressure water) using 1 µm polystyrene latex (PSL) spheres as a surrogate. A …


Single-Reference Coupled Cluster Theory For Multi-Reference Problems, Johannes T. Margraf, Ajith Perera, Jesse J. Lutz, Rodney J. Bartlett Nov 2017

Single-Reference Coupled Cluster Theory For Multi-Reference Problems, Johannes T. Margraf, Ajith Perera, Jesse J. Lutz, Rodney J. Bartlett

Faculty Publications

Coupled cluster (CC) theory is widely accepted as the most accurate and generally applicable approach in quantum chemistry. CC calculations are usually performed with single Slater-determinant references, e.g., canonical Hartree-Fock (HF) wavefunctions, though any single determinant can be used. This is an attractive feature because typical CC calculations are straightforward to apply, as there is no potentially ambiguous user input required. On the other hand, there can be concern that CC approximations give unreliable results when the reference determinant provides a poor description of the system of interest, i.e., when the HF or any other single determinant ground state has …


Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr. Jul 2016

Predictive Coupled-Cluster Isomer Orderings For Some SiNCM (M, N ≤ 12) Clusters: A Pragmatic Comparison Between Dft And Complete Basis Limit Coupled-Cluster Benchmarks, Jason N. Byrd, Jesse J. Lutz, Duminda S. Ranasinghe, Yifan Jin, Ajith Perera, Xiaofeng F. Duan, Larry W. Burggraf, John A. Montgomery Jr.

Faculty Publications

The accurate determination of the preferred Si12C12 isomer is important to guide experimental efforts directed towards synthesizing SiC nano-wires and related polymer structures which are anticipated to be highly efficient exciton materials for opto-electronic devices. In order to definitively identify preferred isomeric structures for silicon carbon nano-clusters, highly accurate geometries, energies and harmonic zero point energies have been computed using coupled-cluster theory with systematic extrapolation to the complete basis limit for set of silicon carbon clusters ranging in size from SiC3 to Si12C12. It is found that post-MBPT(2) correlation energy plays a …


Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz Jul 2011

Using Nanotechnology To Detect Nerve Agents, Mark N. Goltz, Dong-Shik Kim, Leeann Racz

Faculty Publications

Nanotechnology has opened a wide range of opportunities having potential impacts in areas as diverse as medicine and consumer products. In collaboration with researchers at the University of Toledo UT, Air Force Institute of Technology AFIT scientists are exploring the possibility of using a nanoscale organic matrix to detect organophosphate OP nerve agents. Current techniques for detecting OP compounds are expensive and time consuming. Developing a nanoscale organic matrix sensor would allow for direct, real-time sensing under field conditions. This article describes the science behind such a sensor and its possible applications. High-performance sensors are needed to protect Soldiers and …


The Effective Potential Energy Surfaces Of The Nonadiabatic Collision B(2PJA) + H2(1Σ+G,Ν,J) ↔ B(2PJ'A) + H2(1Σ+G,Ν',J'), Matthew B. Garvin Mar 2009

The Effective Potential Energy Surfaces Of The Nonadiabatic Collision B(2PJA) + H2(1Σ+G,Ν,J) ↔ B(2PJ'A) + H2(1Σ+G,Ν',J'), Matthew B. Garvin

Theses and Dissertations

Effective potential energy surfaces (PESs) are calculated for a nonadiabatic collision . This calculation employed 1 2A', 2 2A' and 1 2A" adiabatic PESs numerically calculated at the state-averaged multiconfigurational self-consistent field (SA-MCSCF)/configuration interaction (CI) level for several values of the H2 bond length, H2 orientation angle, and boron distance. The associated nonadiabatic coupling terms (NACTs) were calculated from the SA-MCSCF/CI wave functions using analytic gradient techniques. A line integral through the NACTs was then used to determine the adiabatic-to-diabatic mixing angle required to transform from the 1 2A' and 2 2A' …


Use Of Quantum Mechanical Calculations To Investigate Small Silicon Carbide Clusters, Jean W. Henry Mar 2001

Use Of Quantum Mechanical Calculations To Investigate Small Silicon Carbide Clusters, Jean W. Henry

Theses and Dissertations

Density Functional Theory (DFT) method was employed to model silicon carbide small clusters. Comparing the DFT calculation results with experimental results that observed by using photoelectron spectroscopy (PES), DFT predicts the same structures that experiment observed. For electron affinity, DFT results are in good agreement with experimental results, the root mean square negative offset 0.1 eV found using medium size of basis set (cc-pVDZ+) calculation. DFT results for vibrational frequencies are in good agreement with experiment results; the root mean square error is 72.5 cm-1 wave number. 16 ground state structures of SimCn (m ≤ 4, …