Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Chemistry

Synthesis Of Phosphonate-Based Diimide Ligands, Kenya V. Medina, Adelani Pius Mar 2022

Synthesis Of Phosphonate-Based Diimide Ligands, Kenya V. Medina, Adelani Pius

Honors Program Theses and Research Projects

There has been a resurged interest in the synthesis of metal-organic frameworks because of their potential applications in energy production and drug delivery. Although diimides are insoluble in aqueous solutions, the addition of phosphonic acid allows the complex to be water soluble, which greatly increases their application. Therefore, the creation of a hybrid metal-organic complex by the addition of phosphonic groups to diimide ligands can result in a polar porous compound. In this project the ligand design included the use of dianhydrides including pyromellitic dianhydride, naphthalenetetracarboxylic dianhydride, perylenetetracarboxylic dianhydride, and biphenyl-tetracarboxylic acid dianhydride. These dianhydride precursors were refluxed under argon …


Recent Studies On The Synthesis Of Medicinal Molecules., Paige Monsen Aug 2021

Recent Studies On The Synthesis Of Medicinal Molecules., Paige Monsen

Electronic Theses and Dissertations

Medicinal chemistry interfaces synthetic organic chemistry, natural product chemistry and chemical biology, with a goal of yielding therapeutic agents. Natural products or compounds derived from natural sources such as plants, animals, and microorganisms, are often biologically active and render that compound a likely drug lead. For thousands of years humankind has utilized natural products for medicinal purposes and consequently scientists take advantage of both these compounds’ core structural characteristics and their modes of actions on selected targets as inspiration to develop therapeutics. Because the total synthesis of such complex molecules can be cumbersome and expensive, semi-synthetic methods on isolated natural …


Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett Jul 2021

Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett

Graduate Theses and Dissertations

Electron rich enamines are capable of C-N bond homolysis and subsequent recombination and/or disproportionation. It is unclear what causes these radicals to undergo recombination or disproportionation. Density Functional Theory (DFT) calculations do not provide a transition state for the recombination and disproportionation processes and therefore they cannot be used to predict the favorable reaction. Breslow intermediates formed by deprotonation of thiazolium salts and reaction with aromatic aldehydes are examples of electron rich enamines. These breslow intermediates can undergo C-N bond homolysis to form a radical pair the either recombine or disproportionate. Upon investigation of the factors influencing recombination and disproportionation, …


Emergent Photophysics In Diketopyrrolopyrrole Superstructures, Andrew Levine Jun 2021

Emergent Photophysics In Diketopyrrolopyrrole Superstructures, Andrew Levine

Dissertations, Theses, and Capstone Projects

Organic semiconductors have received substantial attention as active components in optoelectronic devices because of their processability and customizable electronic properties. Tailoring the organic active layer in these devices to exhibit desirable optoelectronic properties requires understanding the complex and often subtle structure-property relationships governing their photophysical response to light. Both structural organization and frontier molecular orbitals (FMO) play pivotal roles in energy relaxation processes, and complex interplay between organization and orbital energies are difficult to anticipate based upon the molecular structure of the components alone, especially in systems comprised of multiple components. In pursuit of design rules, there is a need …


Applications Of Sodium Azide In The Synthesis Of Tetrazines And Hydrolysis Reactions, My Le May 2021

Applications Of Sodium Azide In The Synthesis Of Tetrazines And Hydrolysis Reactions, My Le

Honors Theses

The inverse electron demand Diels−Alder cycloadditions of heterocyclic azadienes have provided a robust methodology for synthesizing highly substituted and functionalized heterocycles. It is widely used in organic synthesis and the pharmaceutical industry in the divergent construction of screening libraries and bioorthogonal conjugation. Each heterocyclic azadiene was found to possess a unique reactivity toward different classes of dienophiles, display predictable modes of cycloaddition, and exhibit substantial substituent electronic effects impacting their intrinsic reactivity and cycloaddition regioselectivity. Synthesis of 1,2,4,5-tetrazine has been reported in the literature since the late 19th century, showing scientists' tremendous interest in its application.

Herein we attempt to …


Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden Apr 2021

Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden

Honors Thesis

The industrial demand for higher capacity, light-weight battery materials has skyrocketed in recent years due to heavy investments in portable electronics, electronic vehicles, and renewable energy sources. However, rechargeable battery technology has seen little improvement since the invention of the Lithium-Ion battery in the 1980s. The low energy density of the traditionally utilized LiCoO2 cathodic material (specific capacity: 272 mAh g-1), has limited its potential to meet these increasing demands. To solve this problem, our research group is investigating new types of lightweight, organic, polymeric materials with conductive backbones as a possible replacement for the cathodic materials in Lithium-Ion batteries. …


Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador Mar 2021

Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador

Honors Theses

NIR emissive fluorophores are intensely researched due to their potential to replace modern imaging procedures. Many molecular strategies have been employed in the literature to optimize fluorophores for deeper NIR absorption and emission, biocompatibility, and higher fluorescence quantum yields. Amongst the fluorophores studied to date, proaromatic indolizine donors are attractive alternatives to traditional alkyl amine and indoline based donors due to their 1) lower energy absorption and emission facilitated by proaromaticity, 2) large Stokes shifts due to increased dihedral angles about the π-system, 3) ease of functionalization and capacity for bioconjugation at the phenyl ring, and 4) potential for further …


Influence Of Conformational Restriction On The Antibacterial Activity And Ribosomal Selectivity Of Aminoglycoside Antibiotics, Michael Gabriel Pirrone Jan 2020

Influence Of Conformational Restriction On The Antibacterial Activity And Ribosomal Selectivity Of Aminoglycoside Antibiotics, Michael Gabriel Pirrone

Wayne State University Dissertations

The ever-increasing threat posed by multidrug-resistant infectious bacteria necessitates

the development of novel antibiotics. Aminoglycoside antibiotics are growing in interest due to

their broad spectrum of activity, lack of known drug related allergies, low manufacturing cost,

and their well-studied mechanism of action. The simplification of rational drug design due to the

well-studied mechanism of action is the key to overcoming the issues presented by these drugs,

namely ototoxicity and nephrotoxicity.

A study of the effect of the conformation of the aminoglycoside ring I side chain is

described wherein it was discovered that an increase in a particular conformation augments the …


Impact Of Chemical Doping On The Thermoelectric Charge Transport Of Organic Semiconductors, Connor J. Boyle Nov 2018

Impact Of Chemical Doping On The Thermoelectric Charge Transport Of Organic Semiconductors, Connor J. Boyle

Doctoral Dissertations

The thermoelectric properties of organic semiconductors allow them to directly convert heat into electricity without the use of moving parts and to directly convert electricity into heat without the use of working fluids. These properties offer opportunities for the generation of electricity from non-conventional or renewable sources of heat and for refrigeration without the risk of leaking harmful working fluids at any length scale down to the nanoscale. Since organic materials are lightweight, flexible, and made from abundant resources, these opportunities could one day become affordable for widespread use and could be expanded to include specialized and otherwise difficult to …


Higher Energy Gap Control Of Fluorescence In Conjugated Polymers, Chien-Hung Chiang Mar 2018

Higher Energy Gap Control Of Fluorescence In Conjugated Polymers, Chien-Hung Chiang

LSU Doctoral Dissertations

Chemo- and biosensors based on fluorescent conjugated polymer benefit from greater detection sensitivity due to amplification of the electronic perturbations produced by analyte binding. This amplification stems from the exciton-transporting properties of conjugated polymers. A conventional design paradigm relies on the analyte binding events which generate sites of lower energy relative to the polymer energy: either fluorescence quenching sites (turn-off sensors) or bathochromically shifted fluorophores (turn-on sensors). In both type sensors, the excitons migrate to the lower-energy site created by analyte binding.

This dissertation primarily focused the investigation of an alternative paradigm when analyte binding creates higher energy gap sites …


Synthesis And Characterization Of Neo-Confused Porphyrins And Related Systems, Arwa Salem Almejbel Nov 2015

Synthesis And Characterization Of Neo-Confused Porphyrins And Related Systems, Arwa Salem Almejbel

Theses and Dissertations

Carbaporphyrins have been the focus of many studies, and a wide variety of related carbaporphyrinoid systems have been reported. N-confused porphyrins are a class of carbaporphyrins where one pyrrole unit has been inverted. In this work, a newly discovered family of porphyrin isomers where one of the pyrrolic subunits is connected to the meso-bridges in a 1,3-fashion, called neo-confused porphyrins, has been investigated.

Reaction of pyrrole-3-carbaldehydes with acetoxymethylpyrroles and NaH in DMF gave neo-confused dipyrrylmethane dialdehydes. The resulting dialdehydes underwent an acid catalyzed condensation with a dipyrrylmethane to give neo-confused phlorins, and following oxidation with FeCl3 afforded new neo-confused porphyrins. …


Photogenerated O-Azaxylylenes: Mechanistic Studies And Synthetic Applications, William Cole Cronk Jan 2015

Photogenerated O-Azaxylylenes: Mechanistic Studies And Synthetic Applications, William Cole Cronk

Electronic Theses and Dissertations

This research sets out to build upon excited state o-azaxylylene cycloaddition. The mechanism behind the excitation and cycloaddition process of photogenerated o-azaxylylenes was determined experimentally. Time-correlated single-photon counting, steady-state spectroscopy, triplet quenching experiments, and quantum yield studies provided evidence suggesting that excited state intramolecular proton transfer is followed by intersystem crossing and stepwise addition to the tethered unsaturated pendant.

In keeping with the principles of diversity oriented synthesis, a modular approach was taken to gain access to a diverse array of N,O,S-Polyheterocycles which were modified postphotochemically via Suzuki coupling to yield fused biaryls. Cycloaddition products, outfitted with halogens …


Investigating The Synthesis Of Heterocycles Via Gold Catalyzed Cyclizations And Cyclo-Dehydrating Reactions, Katherine L. Childers Jan 2015

Investigating The Synthesis Of Heterocycles Via Gold Catalyzed Cyclizations And Cyclo-Dehydrating Reactions, Katherine L. Childers

Undergraduate Honors Thesis Projects

The goal of this project was to study novel synthetic procedures for heterocycles. This was achieved through a two-part investigation. In the first part, a variety of conditions for the gold catalyzed cyclization of allenes were studied. This work was focused on the lesser studied intermolecular reactions of allenes. A variety of allenes were synthesized, and then reacted with 1,3-dipoles and a gold catalyst. These reactions were determined to be unsuccessful through the analysis of nuclear magnetic resonance spectroscopy data. In the second part of this study, the synthesis of 1,3,4-oxadiazoles was investigated. Several cited procedures were examined to determine …


Synthesis, Evaluation And Applications Of Biologically Significant Molecules And Their Analogues, Sneha Ashesh Belapure Dec 2012

Synthesis, Evaluation And Applications Of Biologically Significant Molecules And Their Analogues, Sneha Ashesh Belapure

Doctoral Dissertations

Synthetic chemists are always looking for challenging problems to solve. Design and synthesis of novel molecules that can act as agents of chemical and biological modification are one of the foremost goals of a synthetic chemist. This dissertation describes advances and efforts made in this area.

Obesity is one of the critical problems of the modern age. Molecules that can remediate this condition are highly sought after. The first chapter of this dissertation describes synthetic strategies explored to prepare these valuable natural products along with their structural and stereochemical analogues to study structure and activity relationships (SAR). This method gives …


Studies Toward The Total Synthesis Of Antascomicin B, David Ross Clay Aug 2012

Studies Toward The Total Synthesis Of Antascomicin B, David Ross Clay

Graduate Theses and Dissertations

The following dissertation describes synthetic efforts toward the synthesis of the C21-C34 fragment of antascomicin B. Our initial enzymatic approach is detailed as well as an asymmetric transfer hydrogenation (ATH) strategy that will be used in the eventual total synthesis of the molecule. Several investigations into anomalies observed during (ATH) reactions are also discussed.