Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Chemistry

Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore Aug 2022

Development Of High Quantum Efficiency Strained Superlattice Spin Polarized Photocathodes Via Metal Organic Chemical Vapor Deposition, Benjamin Belfore

Electrical & Computer Engineering Theses & Dissertations

Spin polarized photocathodes are necessary to examine parity violations and other fundamental phenomena in the field of high energy physics. To create these devices, expensive and complicated growth processes are necessary. While integral to accelerator physics, spin polarized electrons could have other exciting applications in materials science and other fields of physics. In order to explore these other applications feasibly, the relative supply of spin polarized photocathodes with a high rate of both polarization and photoemission needs to be increased. One such way to increase this supply is to develop the means to grow them faster and at a larger …


Oxidation Of Thiols To Disulfides Using An Environmentally “Green” Organocatalyst And New Mechanistic Insights, Kosta V. Vlasakakis, Olivia M. White, Robert P. Reynolds, Shayne M. Weierbach, Shannon M. Weaver, Ramsey T. Ritter, Nishi H. Patel, Eric C. Hayes, Sydney Dunmire, Kyle M. Lambert Mar 2022

Oxidation Of Thiols To Disulfides Using An Environmentally “Green” Organocatalyst And New Mechanistic Insights, Kosta V. Vlasakakis, Olivia M. White, Robert P. Reynolds, Shayne M. Weierbach, Shannon M. Weaver, Ramsey T. Ritter, Nishi H. Patel, Eric C. Hayes, Sydney Dunmire, Kyle M. Lambert

Undergraduate Research Symposium

The selective oxidation of thiols to disulfides is an area of great importance in the areas of materials and medicinal chemistry research. The production of polymers, rubber, pharmaceuticals, and the folding of proteins in biological systems all rely on the formation of disulfide bonds. Herein, we introduce a stoichiometric and electrocatalytic method for the oxidation of various pharmaceutically and biologically relevant thiols into their respective disulfides in more environmentally benign solvents such as water and alcohol solvents. The scope of the transformation was evaluated and a detailed mechanistic study involving control experiments, experimental kinetic studies, and computational investigations led to …


Access To Nitrogen Heterocycles Via Borrowing Hydrogen Catalysis, Robert P. Reynolds, Kellen P. Mcguire, Conor T. Mccormick, Kyle M. Lambert Mar 2022

Access To Nitrogen Heterocycles Via Borrowing Hydrogen Catalysis, Robert P. Reynolds, Kellen P. Mcguire, Conor T. Mccormick, Kyle M. Lambert

Undergraduate Research Symposium

Nitrogen heterocycles are ubiquitous motifs which occur as the core structure of several alkaloid natural products exhibiting inherent biological activity against an array of bacteria, fungi, viruses, and cancer cell lines. These azacycles serve as key synthetic building blocks for medicinal chemists to access more structurally complex and diverse compounds with tunable biological properties. A synthetic approach to these valuable motifs employing intramolecular borrowing hydrogen catalysis has been developed. The utility of the developed chemistry will be applied to synthetic efforts towards the recently isolated Cylicomorphins A-E.


4,6-O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators And Their Applications For Multi-Component Gels, Pooja Sharma, Guijun Wang Mar 2022

4,6-O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators And Their Applications For Multi-Component Gels, Pooja Sharma, Guijun Wang

Chemistry & Biochemistry Faculty Publications

The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetalprotected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, …


The Acute Physiological Response Of Polar Bears To Helicopter Capture, John P. Whiteman, Henry J. Harlow, George M. Durner, Eric V. Regehr, Steven C. Amstrup, Anthony M. Pagano, Merav Ben-David Jan 2022

The Acute Physiological Response Of Polar Bears To Helicopter Capture, John P. Whiteman, Henry J. Harlow, George M. Durner, Eric V. Regehr, Steven C. Amstrup, Anthony M. Pagano, Merav Ben-David

Biological Sciences Faculty Publications

Many wildlife species are live captured, sampled, and released; for polar bears (Ursus maritimus) capture often requires chemical immobilization via helicopter darting. Polar bears reduce their activity for approximately 4 days after capture, likely reflecting stress recovery. To better understand this stress, we quantified polar bear activity (via collar‐mounted accelerometers) and body temperature (via loggers in the body core [Tabd] and periphery [Tper]) during 2–6 months of natural behavior, and during helicopter recapture and immobilization. Recapture induced bouts of peak activity higher than those that occurred during natural behavior for 2 of 5 bears, …


Marcadores Moleculares Subrogados A La Repelencia Al Agua En Suelos Afectados Por El Fuego, Nicasio T. Jiménez-Morillo, Gonzalo Almendros, Nuno Guiomar, Ana Z. Miller, Cristina Barrocas-Dias, José M. De La Rosa, Patrick G. Hatcher, José A. González-Pérez Jan 2022

Marcadores Moleculares Subrogados A La Repelencia Al Agua En Suelos Afectados Por El Fuego, Nicasio T. Jiménez-Morillo, Gonzalo Almendros, Nuno Guiomar, Ana Z. Miller, Cristina Barrocas-Dias, José M. De La Rosa, Patrick G. Hatcher, José A. González-Pérez

Chemistry & Biochemistry Faculty Publications

Soil water repellency (SWR) is often attributed to the accumulation of hydrophobic organic compounds, mainly lipids. Nonetheless, lipid extraction not always suppress SWR and unextractable soil constituents may be related with residual SWR. Burnt (B) and unburnt (UB) soils (Doñana National Park, Huelva) under two vegetations (cork oak and heather) and two soil fractions, coarse (1–2 mm) and fine (


Ozonized Biochar Filtrate Effects On The Growth Of Pseudomonas Putida And Cyanobacteria Synechococcus Elongatus Pcc 7942, Oumar Sacko, Nancy L. Engle, Timothy J. Tschaplinski, Sandeep Kumar, James Weifu Lee Jan 2022

Ozonized Biochar Filtrate Effects On The Growth Of Pseudomonas Putida And Cyanobacteria Synechococcus Elongatus Pcc 7942, Oumar Sacko, Nancy L. Engle, Timothy J. Tschaplinski, Sandeep Kumar, James Weifu Lee

Chemistry & Biochemistry Faculty Publications

Background

Biochar ozonization was previously shown to dramatically increase its cation exchange capacity, thus improving its nutrient retention capacity. The potential soil application of ozonized biochar warrants the need for a toxicity study that investigates its effects on microorganisms.

Results

In the study presented here, we found that the filtrates collected from ozonized pine 400 biochar and ozonized rogue biochar did not have any inhibitory effects on the soil environmental bacteria Pseudomonas putida, even at high dissolved organic carbon (DOC) concentrations of 300 ppm. However, the growth of Synechococcus elongatus PCC 7942 was inhibited by the ozonized biochar filtrates at …


On The Stratospheric Chemistry Of Midlatitude Wildfire Smoke, Susan Soloman, Kimberlee Dube, Kane Stone, Pengfei Yu, Doug Kinnison, Owen B. Toon, Susan E. Strahan, Karen H. Rosenlof, Robert Portmann, Sean Davis, William Randel, Peter Bernath, Chris Boone, Charles G. Bardeen, Adam Bourassa, Daniel Zawada, Doug Degenstein Jan 2022

On The Stratospheric Chemistry Of Midlatitude Wildfire Smoke, Susan Soloman, Kimberlee Dube, Kane Stone, Pengfei Yu, Doug Kinnison, Owen B. Toon, Susan E. Strahan, Karen H. Rosenlof, Robert Portmann, Sean Davis, William Randel, Peter Bernath, Chris Boone, Charles G. Bardeen, Adam Bourassa, Daniel Zawada, Doug Degenstein

Chemistry & Biochemistry Faculty Publications

Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The …


Microbial Labilization And Diversification Of Pyrogenic Dissolved Organic Matter, Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, Patrick G. Hatcher Jan 2022

Microbial Labilization And Diversification Of Pyrogenic Dissolved Organic Matter, Aleksandar I. Goranov, Andrew S. Wozniak, Kyle W. Bostick, Andrew R. Zimmerman, Siddhartha Mitra, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

With the increased occurrence of wildfires around the world, interest in the chemistry of pyrogenic organic matter (pyOM) and its fate in the environment has increased. Upon leaching from soils by rain events, significant amounts of dissolved pyOM (pyDOM) enter the aquatic environment and interact with microbial communities that are essential for cycling organic matter within the different biogeochemical cycles. To evaluate the biodegradability of pyDOM, aqueous extracts of laboratory-produced biochars were incubated with soil microbes, and the molecular changes to the composition of pyDOM were probed using ultrahigh-resolution mass spectrometry (Fourier transform–ion cyclotron resonance–mass spectrometry). Given that solar irradiation …


A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath Jan 2022

A Local Mode Study Of Ring Puckering Effects In The Infrared Spectra Of Cyclopentane, Edwin L. Sibert Iii, Peter F. Bernath

Chemistry & Biochemistry Faculty Publications

We report and interpret recently recorded high-resolution infrared spectra for the fundamentals of the CH2 scissors and CH stretches of gas phase cyclopentane at −26.1 and −50 C, respectively. We extend previous theoretical studies of this molecule, which is known to undergo barrierless pseudorotation due to ring puckering, by constructing local mode Hamiltonians of the stretching and scissor vibrations for which the frequencies, couplings, and linear dipoles are calculated as functions of the pseudorotation angle using B3LYP/6-311++(d,p) and MP2/cc-pVTZ levels of theory. Symmetrization (D5h) of the vibrational basis sets leads to simple vibration/pseudorotation Hamiltonians whose solutions …