Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Chemistry

Design And Development Of 2d Functional Semiconductor Nanocrystals, Andrew Hunter Davis Aug 2021

Design And Development Of 2d Functional Semiconductor Nanocrystals, Andrew Hunter Davis

Dissertations - ALL

Anisotropic nanocrystals (NCs) have become of keen interest in recent years, especially for applications in optoelectronic devices due to their directionally oriented emissions, narrow emission spectra, and suitable morphologies for device integration. Of the desired anisotropic NCs, two-dimensional (2D) NCs are of profound interest, due to their impressive optical and electronic properties as well as their prospective advantages towards applications in layered optoelectronic devices, such as solar cells. However, 2D NCs face many challenges, including limited synthetic derivation, as well as decreased stability and optical response, due to their large surface-to-volume ratio and reactive planar surface increasing surface defect state …


Editorial: Carbon- And Inorganic-Based Nanostructures For Energy Applications, Federico Cesano, M. Jasim Uddin, Yuanbing Mao, Muhammad N. Huda Nov 2020

Editorial: Carbon- And Inorganic-Based Nanostructures For Energy Applications, Federico Cesano, M. Jasim Uddin, Yuanbing Mao, Muhammad N. Huda

Chemistry Faculty Publications and Presentations

No abstract provided.


Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor Aug 2020

Mxenes As Flow Electrodes For Capacitive Deionization Of Wastewater, Naqsh E. Mansoor

Boise State University Theses and Dissertations

The energy-water nexus poses an integrated research challenge, while opening up an opportunity space for the development of energy efficient technologies for water remediation. Capacitive Deionization (CDI) is an upcoming reclamation technology that uses a small applied voltage applied across electrodes to electrophoretically remove dissolved ionic impurities from wastewater streams. Similar to a supercapacitor, the ions are stored in the electric double layer of the electrodes. Reversing the polarity of applied voltage enables recovery of the removed ionic impurities, allowing for recycling and reuse. Simultaneous materials recovery and water reclamation makes CDI energy efficient and resource conservative, with potential to …


Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson May 2020

Spectroscopic Investigations Of Excited Charge Carriers In Ii-Vi Nanoparticles, William Matthew Sanderson

Arts & Sciences Electronic Theses and Dissertations

The large absorption cross sections and the tunability of the energetic spacings between the states in the conduction (CB) and valence band (VB) within a semiconductor nanoparticle (NP) make them promising media for capturing electromagnetic radiation and converting it into charge carriers, or electricity. In photovoltaic devices that incorporate semiconductor NPs, it would be ideal if every photon could be absorbed by a NP and the carriers could be collected with perfect efficiency and without loss of energy. The relaxation pathways of the carriers within the NPs down to the band edge and their fate at the band edge contribute …


Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li Jun 2019

Electrocatalytic Nanomaterials For Reduction Of Hydrogen Peroxide As Potential Radioprotectors, Rui-Hong Jia, Jin-Xuan Zhang, Xiao-Dong Zhang, Mei-Xian Li

Journal of Electrochemistry

Nanomaterials have shown many potential application prospects in the biomedical field, such as medical imaging, drug delivery and biosensing due to their unique physical and chemical properties. In this review we focus on nanomaterials that have shown not only abilities of radiation protection, but also good electrocatalytic activities toward reduction reactions of hydrogen peroxide and oxygen. We discuss the abilities of radiation protection of these nanomaterials that are ascribed to their enzyme-like activities because their catalytic properties provide an effective pathway for scavenging free radicals in vivo via rapid reactions with reactive oxygen species. We also provide insights into electrocatalytic …


Application Of Nanomaterials In The Detection Of Volatile Organic Compounds In Exhaled Breath For Cancer Diagnosis, Wan-Qiao Bai, Xue-Zhi Qiao, Tie Wang Apr 2019

Application Of Nanomaterials In The Detection Of Volatile Organic Compounds In Exhaled Breath For Cancer Diagnosis, Wan-Qiao Bai, Xue-Zhi Qiao, Tie Wang

Journal of Electrochemistry

Volatile organic compounds (VOCs) generated in human body can reflect one’s health state, and numerous diseases are identified by some VOCs biomarkers. More recently, analyses of VOCs biomarkers from exhaled breath have turned into a research frontier worldwide because it offers a noninvasive way for diseases diagnosis. Various kinds of nanomaterials are used to enhance the performance of sensing techniques, and play an essential role in miniaturization detection. In this review, several kinds of nanomaterials (metallic, metal oxide, carbon-based, composites and MOFs-based materials) used in various VOCs detection methods, especially in VOCs sensors are summarized. Learning from the successful utilization …


Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang Oct 2018

Recent Advances In Non-Noble Metal Nanomaterials For Oxygen Evolution Electrocatalysis, Dan-Dan Zhao, Nan Zhang, Ling-Zheng Bu, Qi Shao, Xiao-Qing Huang

Journal of Electrochemistry

Hydrogen is a kind of renewable energies with the merits of environmentally friendly, abundance and high weight energy density, which can replace the fossil energy. The electrolysis of water is regarded as the most effective way to generate hydrogen. Owing to the sluggish kinetics and large overpotential of the anode oxygen evolution reaction (OER), the efficiency of the cathode hydrogen evolution reaction is greatly limited. Therefore, it is highly desirable to explore efficient, stable and low cost electrocatalysts to reduce the overpotential of OER and improve the efficiency of hydrogen evolution. Based on the natural characteristics of non-noble metal catalysts …


Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari Apr 2016

Doped Tio2 Nanowires For Applications In Dye Sensitized Solar Cells And Sacrifical Hydrogen Production, Qasem Alsharari

Electronic Thesis and Dissertation Repository

This thesis explores the synthesis of metal oxide 1-D nanowires using a sol-gel method in supercritical carbon dioxide (sc-CO2), as an environmental friendly enabling solvent. Porous nanowires were synthesized and their performance was tested in dye sensitized solar cell and sacrifical hydrogen production. Titanium isopropoxide (TIP) was used as a precursor for titania synthesis while copper, bismuth and indium were examined as dopants, respectively. The sol-gel reactions were catalyzed by acetic acid in CO2 at a temperature of 60 °C and pressure of 5000 psi. It was observed that acetic acid/monomer ratio > 4 produced nanowires while a …


A Comparative Study Of Polyurethane Nanofibers With Different Patterns And Its Analogous Nanofibers Containing Mwcnts, Javier Macossay-Torres, Faheem A. Sheikh, Hassan Ahmad, Hern Kim, Gary L. Bowlin Sep 2015

A Comparative Study Of Polyurethane Nanofibers With Different Patterns And Its Analogous Nanofibers Containing Mwcnts, Javier Macossay-Torres, Faheem A. Sheikh, Hassan Ahmad, Hern Kim, Gary L. Bowlin

Chemistry Faculty Publications and Presentations

Tissue engineering is a multidisciplinary field that has evolved in various dimensions in recent years. One of the main aspects in this field is the proper adjustment and final compatibility of implants at the target site of surgery. For this purpose, it is desired to have the materials fabricated at the nanometer scale, since these dimensions will ultimately accelerate the fixation of implants at the cellular level. In this study, electrospun polyurethane nanofibers and their analogous nanofibers containing MWCNTs are introduced for tissue engineering applications. Since MWCNTs agglomerate to form bundles, a high intensity sonication procedure was used to disperse …


A New Nonenzymatic Glucose Sensor Based On The Cuo Nanoplatelets, Yan-Cai Li, Fu-Ying Huang, Shun-Xing Li, Jie Chen, Shu-Qing Feng, Fei Wang Feb 2014

A New Nonenzymatic Glucose Sensor Based On The Cuo Nanoplatelets, Yan-Cai Li, Fu-Ying Huang, Shun-Xing Li, Jie Chen, Shu-Qing Feng, Fei Wang

Journal of Electrochemistry

The CuO nanoplatelets were synthesized by hydrothermal method. The structure and morphology of the CuO nanoplatelets were characterized by TEM and XRD. A new nonenzymatic glucose sensor was constructed by immobilizing the CuO nanoplatelets on glassy carbon electrode with Nafion. The electrochemical performance of the CuO/Nafion/GCE for the detection of glucose was investigated by cyclic voltammetry and current-time curve. The experiment results showed that the linear dependence of the sensor was 0.01 to 0.3 mmol·L-1 for glucose with a sensitivity of 1783.58 μA·mmol-1·L·cm-2, and the detection limit of the sensor was 0.80 μmol·L-1 ( …


A Simple Approach For Synthesis, Characterization And Bioactivity Of Bovine Bones To Fabricate The Polyurethane Nanofiber Containing Hydroxyapatite Nanoparticles, Faheem A. Sheikh, M. A. Kanjwal, Javier Macossay-Torres, N. A. M. Barakat, H. Y. Kim Jan 2012

A Simple Approach For Synthesis, Characterization And Bioactivity Of Bovine Bones To Fabricate The Polyurethane Nanofiber Containing Hydroxyapatite Nanoparticles, Faheem A. Sheikh, M. A. Kanjwal, Javier Macossay-Torres, N. A. M. Barakat, H. Y. Kim

Chemistry Faculty Publications and Presentations

In the present study, we had introduced polyurethane (PU) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals had been employed to synthesize HAp NPs through the calcination of bovine bones. Typically, a colloidal gel consisting of HAp/PU had been electrospun to form nanofibers. In this communication, physiochemical aspects of prepared nanofibers were characterized by FE-SEM, TEM and TEM-EDS, which confirmed that nanofibers were well-oriented and good dispersion of HAp NPs, over the prepared nanofibers. Parameters, affecting the utilization of the prepared nanofibers in …


New Interfacial Nanochemistry On Sensory Bioscaffold-Membranes Of Nanobelts, Feng Chen May 2011

New Interfacial Nanochemistry On Sensory Bioscaffold-Membranes Of Nanobelts, Feng Chen

Graduate Theses and Dissertations

Nanostructured bioscaffolds and biosensors are evolving as popular and powerful tools in life science and biotechnology, due to the possible control of their surface and structural properties at the nm-scale. Being seldom discussed in literature and long-underexploited in materials and biomedical sciences, development of nanofiber-based sensory bioscaffolds has great promises and grand challenges in finding an ideal platform for low-cost quantifications of biological and chemical species in real-time, label-free, and ultrasensitive fashion. In this study, titanate nanobelts were first of all synthesized, from hydrothermal reactions of a NaOH (or KOH solution) with TiO2 powder, to possess underexploited structure and surface …


Electrocatalytic Oxidation Of Glucose On Nano Pt/C Electrode, Cui-Lian Chen Feb 2006

Electrocatalytic Oxidation Of Glucose On Nano Pt/C Electrode, Cui-Lian Chen

Journal of Electrochemistry

Nano Pt/C electrocatalysts were prepared by intermittent microwave heating method.The electrooxidation of glucose on smooth Pt and~Pt/C electrodes has been studied and compared.The results showed that the electrochemical properties on nano Pt/C were improved due to the reduction of the overpotential and the increase in the kinetic rate.The surface area would be significantly increased when the particle size of the catalyst was reduced to nano-scale,resulting in the increase in the activity.The enhancement in the resistance to poisoning could be explained that the oxygen-containing species are easier to react with poisoning species on nano Pt/C and re-active the electrode.