Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Chemistry

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi Dec 2022

Functionalized Plasmonic Nanostructures For Ultrasensitive Single Cell Analysis, Priya Rathi

Arts & Sciences Electronic Theses and Dissertations

Ultrasensitive detection and quantification of soluble, secreted and cell surface-bound proteins is critical for advancing our understanding of cellular systems, enabling effective drug development, novel therapies, and bio-diagnostics. However, exiting technologies are largely limited by their sensitivity, making the detection and quantification of low-abundant proteins extremely challenging. This forms a major barrier in various fields of biology and biomedical sciences. In this work, we introduce novel cellular analysis methodologies based on plasmon-enhanced fluorescence for analyzing cell structure and probing surface and secreted proteins from cells. In the first part, we introduce plasmon-enhanced expansion microscopy and demonstrate the effectiveness of employing …


Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores Dec 2022

Achieving Safe Use Of Advanced Materials In Drinking Water Through Novel Nano Analytics And Enabling Electrification Using Green Catalyst, Kenneth Ray Flores

Open Access Theses & Dissertations

The accumulation of engineered nanomaterials (ENMs) in environmental sectors will continue to increase as more applications are discovered for their unique properties and characteristics. Additionally, the presence of nanomaterials in the environment becomes exacerbated as more consumer products containing nanoparticles are approved for use. It is debated whether the toxic effects of nanoparticles stem from the particles themselves, ionic species, or formation of secondary particles. Therefore, understanding the behavior of nanoparticles in the environment becomes key to discerning the toxicological effects of nanoparticles. Many advancements have been made with ICP-MS to understand the behavior of nanoparticles in the environmental systems, …


Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun Dec 2022

Nano-Engineered Soft Magnets: Potential Application In Water Treatment, Hyperthermia And Molecular (Organic) Magnets, Yohannes Weldemariam Getahun

Open Access Theses & Dissertations

Scrutinizing the remarkable and tunable properties of magnetic materials at a nanoscale size "There's Plenty of Room at the Bottom..." Richard Feynman, this study attempts to find sustainable solutions to some of the deteriorating environmental, health, and energy problems the world is encountering. Due to their simple preparation, surface adaptability, and tunable magnetic and optical properties, magnetic nanoparticles have been extensively investigated in water treatment, cancer therapy, data storage, and more. However, relying on non-reusable and chemical-based treatment agents in water, complex and costly cancer treatment procedures and molecular magnets that operate far below room temperature limited those attempts from …


Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck Sep 2022

Enabling Nanoimprint Lithography Techniques Across Multiple Manufacturing Processes, Vincent Einck

Doctoral Dissertations

Advanced nanooptics in the areas of flat lenses, diffractive elements, and tunable emissivity require a route to high throughput manufacturing. Nanooptics are often demanding of high refractive index materials, nanometer precision and ease of fabrication. Nanoimprint lithography (NIL) is a low-cost, high throughput manufacturing technique beginning to be realized in commercial industry.1,2 The NIL process is an ideal manufacturing candidate due to its ability to have a fast process time, efficient use of materials, repeatability and high precision while also having wide diversity of potential structures and material choices. Appling NIL techniques to other facets of manufacturing enable the …


Variations In Copper Form Exposure Differentially Modulate Zea Mays (Corn) Physiological Responses, Carolina Valdes Bracamontes Aug 2022

Variations In Copper Form Exposure Differentially Modulate Zea Mays (Corn) Physiological Responses, Carolina Valdes Bracamontes

Open Access Theses & Dissertations

In the present study, Zea mays seedlings grown under nano Cu(OH)2 (nCu), bulk Cu(OH)2 (bCu), and ionic CuSO4 (iCu) compound exposure were harvested after six days. The nutritional profile was determined to be significantly disrupted in the roots by 1000 ppm bCu treatment, resulting in a 58.7% reduction in potassium compared to the control. In the shoots, a significant decrease of manganese was observed for 10 and 1000 ppm iCu treatments with 55.7% and 64.2% reductions, respectively. The overall protein content and catalase (CAT) enzymatic activity, however, remained unaffected in either roots or shoots, while an absence of polyphenol oxidase …


Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez May 2022

Rational Design Of Composite Nanomaterials For Water Treatment Applications, Mariana Marcos-Hernandez

Open Access Theses & Dissertations

Water quantity and quality have been affected in communities all around the world due to population growth, pollution, changes in land use, and climate change. In order to cope with existing and anticipated water demands and shortages, the use of treated or reclaimed water is an ongoing alternative that has helped communities all over the world address this problem. The adaptation of nanotechnology to traditional water and wastewater treatment processes offers new opportunities in technological developments. Unique size-dependent properties such as: high surface to mass ratio, high reactivity, high sorption capacities, fast dissolution, superparamagnetism, among others, provide high-tech efficient materials …


Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain May 2022

Study Of The Chemical Fabrication Process Of Nsom Probes And The Modification Of The Probe Surface, Muhammad Nazmul Hussain

Theses and Dissertations

Near-field scanning optical microscopy (NSOM) merges scanning probe technology with the power of high-resolution optical microscopy and provides a natural view into the nanoworld. NSOM requires tapered probes with subwavelength optical apertures and wide cone angles to efficiently channel the illumination light to the tip apex so that it can acquire optical images beyond the diffraction limit. Tapered probes with a range of cone angles can be fabricated through chemical etching of optical fibers using hydrofluoric acid (HF) by varying the etching time. Apart from their use for NSOM imaging, such optical probes can also be transformed into nanosensors by …


Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty May 2022

Surface-Functionalized Chemiresistive Films That Exploit H-Bonding, Cation-Pi, And Metal-Halide Interactions., Prasadanie Karunarathna Adhihetty

Electronic Theses and Dissertations

The development of gas sensors for detection of volatile organic compounds (VOCs) has been of interest in the sensing field for decades. To date, the use of metal nanoparticle-based chemiresistors for trace VOC detection, particularly gold nanoparticle-based sensors, is of great interest due to their high chemical stability, ease of synthesis, unique optical properties, large surface to volume ratio, and high level of conductivity. Much effort has been devoted towards gold monolayer protected clusters (Au MPCs) as chemiresistors to detect harmful VOCs. The present thesis documents the results of our efforts to exploit the advantages of functionalized Au MPCs chemiresistors …


Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony Apr 2022

Block Copolymer Directed Self-Assembly: Exploring The Efficacy Of Applications In Semiconductor Fabrication, Jakin Bryce Delony

USF Tampa Graduate Theses and Dissertations

Over the course of the past 80 years, semiconductor devices have become increasingly ubiquitous in everyday life.From constructing mainframes that encompassed entire rooms during the 1940s, to inventing personal computers in the 1980s, to developing progressively faster smartphones and wearable technology in the 2010s, the primary driving force behind the Digital Revolution has been increasing transistor counts, and thus computing power, via incremental improvements in optical lithography. In 1965, Intel co-founder Gordon Moore boldly predicted that the transistor density of semiconductor devices would double approximately every 18-24 months. While this prediction -- now colloquially referred to as Moore's Law -- …


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …


Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello Jan 2022

Synthesis And Advanced Characterization Of Energy Materials, Erik Sarnello

Graduate Research Theses & Dissertations

Catalysts are used in an extremely broad range of systems including everything from biological systems to industrial processes. An ideal catalyst offers robust stability and high activity. This work focuses on the synthesis and characterization of materials that show promise in the field of catalysis. Advanced synchrotron characterization techniques and unique experimental design are highlighted to provide foundation work that will provide the necessary information to aid in designing and fabricating catalytic materials. Supported metal nanoparticle (SMN) catalysts are enormously crucial for many catalytic applications. However, catalyst deactivation, caused by sintering and coke formation, is a ubiquitous problem that significantly …


Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage Jan 2022

Electrochemical Gelation Of Metal Chalcogenide Quantum Dots, Chathuranga Chinthana Hewa Rahinduwage

Wayne State University Dissertations

Quantum dots (QDs) are attractive because of their unique size-dependent optical and electronic properties and high surface area. They are tested in research for diverse applications, including energy conversion, catalysis, and sensing. Assembling QDs into functional solid-state devices while preserving their attractive properties is a challenge. Methods currently under the research are not effective in directly fabricating QDs onto devices, making large area assemblies, maintaining the high surface area by forming 3D porous structures, and conducting electricity for applications such as sensing. QD gels are an example of QD assemblies that consist of a 3D porous interconnected QD network. They …


Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell Jan 2022

Characterization Of Nanoparticles Using Inductively-Coupled Plasma Mass Spectrometry, Jabez D. Campbell

MSU Graduate Theses

Nanomaterials are a relatively new class of materials that have many applications which span a wide host of fields from medical products to consumer products. The possible compositions and forms of nanomaterials are just as varied as the applications. Therefore, a versatile characterization method is needed for researchers and regulators alike to ensure nanomaterials are properly used. Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) is a functional method that could fill the characterization need in the nanomaterial research field. Using data from both SP-ICP-MS tests and data from literature established characterization methods, the viability of making SP-ICP-MS the standard …