Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han Apr 2016

Synthesis, Morphological Control, Dispersion Stabilization And In Situ Self-Assembly Of Noble Metal Nanostructures Using Multidentate Resorcinarene Surfactants, Sangbum Han

Chemistry & Biochemistry Theses & Dissertations

In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. Chapter 2 describes the influence of resorcinarene surfactants functionalized with amine- and thiol- headgroups in determining the morphology of monometallic Pt nanoparticles synthesized via the Brust-Schiffrin reaction. We found that while resorcinarene benzylthiol can lead to the formation of highly branched Pt nanostructures, resorcinarene amine can lead to the formation of anisotropic crystalline Pt nanoparticles. Further, we have evaluated the influence of resorcinarene ligands in determining the catalytic activity of these …


Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang Jan 2016

Uv Light-Induced Aggregation Of Titania Submicron Particles, Can Zhou, Yashar Bashirzadeh, Timothy A. Bernadowsky Jr., Xiaoyu Zhang

Mechanical & Aerospace Engineering Faculty Publications

In this study, aggregation of TiO2 (rutile and anatase) submicron particles in deionized (DI) water under ultra-violet (UV) light irradiation was investigated. While no aggregation was observed in the dark, rutile and anatase submicron particles started aggregating upon application of UV light and ceased aggregation in about 2 and 8.4 h, respectively. It has been demonstrated that UV light directly mitigated the particle mobility of TiO2, resulting in a neutralization effect of the Zeta potential. It was also observed that rutile particles aggregated much faster than anatase particles under UV radiation, indicating that the Zeta potential of …