Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Evidence For The Role Of Cyp51a And Xenobiotic Detoxification In Differential Sensitivity To Azole Fungicides In Boxwood Blight Pathogens, Stefanos Stravoravdis, Robert E. Marra, Nicholas R. Leblanc, Joanne Crouch, Jonathan P. Hulvey Jan 2021

Evidence For The Role Of Cyp51a And Xenobiotic Detoxification In Differential Sensitivity To Azole Fungicides In Boxwood Blight Pathogens, Stefanos Stravoravdis, Robert E. Marra, Nicholas R. Leblanc, Joanne Crouch, Jonathan P. Hulvey

Microbiology Department Faculty Publication Series

Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to …


Polymeric Nanoparticles Active Against Dual-Species Bacterial Biofilms, Jessa Marie V. Makabenta, Jungmi Park, Cheng-Hsuan Li, Aritra Nath Chattopadhyay, Ahmed Nabawy, Ryan F. Landis, Akash Gupta, Suzannah Schmidt-Malan, Robin Patel, Vincent M. Rotello Jan 2021

Polymeric Nanoparticles Active Against Dual-Species Bacterial Biofilms, Jessa Marie V. Makabenta, Jungmi Park, Cheng-Hsuan Li, Aritra Nath Chattopadhyay, Ahmed Nabawy, Ryan F. Landis, Akash Gupta, Suzannah Schmidt-Malan, Robin Patel, Vincent M. Rotello

Chemistry Department Faculty Publication Series

Biofilm infections are a global public health threat, necessitating new treatment strategies. Biofilm formation also contributes to the development and spread of multidrug-resistant (MDR) bacterial strains. Biofilm-associated chronic infections typically involve colonization by more than one bacterial species. The co-existence of multiple species of bacteria in biofilms exacerbates therapeutic challenges and can render traditional antibiotics ineffective. Polymeric nanoparticles offer alternative antimicrobial approaches to antibiotics, owing to their tunable physico-chemical properties. Here, we report the efficacy of poly(oxanorborneneimide) (PONI)-based antimicrobial polymeric nanoparticles (PNPs) against multi-species bacterial biofilms. PNPs showed good dual-species biofilm penetration profiles as confirmed by confocal laser scanning microscopy. …


Pharmacological Chaperoning In Fabry Disease, Jerome Rogich Jan 2011

Pharmacological Chaperoning In Fabry Disease, Jerome Rogich

Masters Theses 1911 - February 2014

Fabry Disease is an X-­‐linked lysosomal storage disorder characterized by a variety of symptoms including hypohydrosis, seizures, cardiac abnormalities, skin lesions, and chronic pain. These symptoms stem from a lack of functional endogenous α-­‐ Galactosidase A (α-­GAL), which leads to an accrual of its natural substrate. The severity of the disease symptoms can be directly correlated with the amount of residual enzyme activity. It has been shown that an imino sugar, 1-deoxygalactonojirimycin (DGJ), can increase enzymatic activity and clear excess substrate. This pH-­‐dependent chaperoning phenomenon is believed to arise from the presence of aspartic acid 170 in the active site. …