Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

2014

Oxidative stress

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Rat Hippocampal Responses Up To 90 Days After A Single Nanoceria Dose Extends A Hierarchical Oxidative Stress Model For Nanoparticle Toxicity, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield Jan 2014

Rat Hippocampal Responses Up To 90 Days After A Single Nanoceria Dose Extends A Hierarchical Oxidative Stress Model For Nanoparticle Toxicity, Sarita S. Hardas, Rukhsana Sultana, Govind Warrier, Mo Dan, Peng Wu, Eric A. Grulke, Michael T. Tseng, Jason M. Unrine, Uschi M. Graham, Robert A. Yokel, D. Allan Butterfield

Chemistry Faculty Publications

Ceria engineered nanomaterials (ENMs) have very promising commercial and therapeutic applications. Few reports address the effects of nanoceria in intact mammals, let alone long term exposure. This knowledge is essential to understand potential therapeutic applications of nanoceria in relation to its hazard assessment. The current study elucidates oxidative stress responses in the rat hippocampus 1 and 20 h, and 1, 7, 30 and 90 days following a single systemic infusion of 30 nm nanoceria. The results are incorporated into a previously described hierarchical oxidative stress (HOS) model. During the 1-20 h period, increases of the GSSG: GSH ratio and cytoprotective …


Effects Of Oxidation On Protein-Nanoparticle Interactions, Valdez R. Rahming, Md. Abul Fazal Jan 2014

Effects Of Oxidation On Protein-Nanoparticle Interactions, Valdez R. Rahming, Md. Abul Fazal

Chemistry Faculty Publications

Aims: Upon entrance into the blood stream most nanoparticles bind to an array of proteins forming a “protein corona”. Fibrinogen is the second most abundant blood protein and has been reported to bind to a variety of nanoparticles including metal oxides, polymeric nanoparticles and carbon nanotubes.
Study Design: Study the effects of oxidation on the binding interactions between human serum fibrinogen and magnetic iron (III) oxide nanoparticles.
Place and Duration of Study: Department of Chemistry, College of St. Benedict, 37 South College Avenue, St. Joseph, MN 56374, U.S.A., between June 2011 and May 2012.
Methodology: Spectroscopic techniques (UV-Vis, IR, fluorescence, …