Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Medical Specialties

PDF

Chemistry Faculty Publications

2018

Oxidative stress

Articles 1 - 1 of 1

Full-Text Articles in Chemistry

Doxorubicin-Induced Elevated Oxidative Stress And Neurochemical Alterations In Brain And Cognitive Decline: Protection By Mesna And Insights Into Mechanisms Of Chemotherapy-Induced Cognitive Impairment ("Chemobrain"), Jeriel T. R. Keeney, Xiaojia Ren, Govind Warrier, Teresa Noel, David K. Powell, Jennifer M. Brelsfoard, Rukhsana Sultana, Kathryn E. Saatman, Daret K. St. Clair, D. Allan Butterfield Jul 2018

Doxorubicin-Induced Elevated Oxidative Stress And Neurochemical Alterations In Brain And Cognitive Decline: Protection By Mesna And Insights Into Mechanisms Of Chemotherapy-Induced Cognitive Impairment ("Chemobrain"), Jeriel T. R. Keeney, Xiaojia Ren, Govind Warrier, Teresa Noel, David K. Powell, Jennifer M. Brelsfoard, Rukhsana Sultana, Kathryn E. Saatman, Daret K. St. Clair, D. Allan Butterfield

Chemistry Faculty Publications

Chemotherapy-induced cognitive impairment (CICI) is now widely recognized as a real and too common complication of cancer chemotherapy experienced by an ever-growing number of cancer survivors. Previously, we reported that doxorubicin (Dox), a prototypical reactive oxygen species (ROS)-producing anti-cancer drug, results in oxidation of plasma proteins, including apolipoprotein A-I (ApoA-I) leading to tumor necrosis factor-alpha (TNF-α)-mediated oxidative stress in plasma and brain. We also reported that co-administration of the antioxidant drug, 2-mercaptoethane sulfonate sodium (MESNA), prevents Dox-induced protein oxidation and subsequent TNF-α elevation in plasma. In this study, we measured oxidative stress in both brain and plasma of Dox-treated mice …