Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Chemistry

Rare-Earth-Activated Group Vi D0 Metal Oxides As Thermosensitive Phosphors, Samarage Sameera Perera Jan 2019

Rare-Earth-Activated Group Vi D0 Metal Oxides As Thermosensitive Phosphors, Samarage Sameera Perera

Wayne State University Dissertations

ABSTRACT

RARE-EARTH-ACTIVATED GROUP VI d0 METAL OXIDES AS

THERMOSENSITIVE PHOSPHORS

by

SAMARAGE SAMEERA PRASAD PERERA

AUGUST 2019

Advisor: Dr. Federico A. Rabuffetti

Major: Chemistry

Degree: Doctor of Philosophy

Thermosensitive phosphors are solid-state materials that demonstrate distinct dependence of luminescence emission on temperature. These materials enable optical temperature sensing in environments where conventional thermometry is not possible (e.g., gas turbines, combustion engines, surface temperature distributions). However, the design of thermosensitive phosphors that show adequate sensitivity and low thermal quenching in the intermediate temperature range (i.e., 500–1000 K) remains challenging. This challenge can be addressed by understanding how to rationally manipulate the …


Synthesis Of Volatile And Thermally Stable Aluminum Hydride Complexes And Their Use In Atomic Layer Deposition Of Metal Thin Films, Kyle Blakeney Jan 2018

Synthesis Of Volatile And Thermally Stable Aluminum Hydride Complexes And Their Use In Atomic Layer Deposition Of Metal Thin Films, Kyle Blakeney

Wayne State University Dissertations

The research discussed in this dissertation spans both synthetic inorganic and nanomaterials chemistry. Aluminum hydride complexes have been synthesized and characterized which are highly volatile and thermally stable and their potential as reducing agents for ALD of electropositive metal and metal-containing films was evaluated. A major discovery has been the deposition of aluminum metal films by thermal ALD using an aluminum dihydride complex supported by a simple amido-amine ligand (Chapters 2). Aluminum is the most electropositive element deposited by purely thermal ALD to date and represents a significant breakthrough for this field. This process may have important industrial applications and …


Synthesis Of Discrete Transition Metal (Ni, Fe, Co, Mn) Phosphide Nanoparticles: Compositional Effect On Catalytic And Magnetic Properties, Da Li Jan 2017

Synthesis Of Discrete Transition Metal (Ni, Fe, Co, Mn) Phosphide Nanoparticles: Compositional Effect On Catalytic And Magnetic Properties, Da Li

Wayne State University Dissertations

This dissertation research is focused on the synthesis, characterization of binary and ternary transition metal (Ni, Co, Fe, Mn) phosphide nanomaterials and their catalytic and magnetic properties.

A phase-control strategy enabling the arrested-precipitation synthesis of nanoparticles of Ni5P4 and NiP2 is presented. The composition and purity of the product can be tuned by changing key synthetic levers, including the metal precursor, the oleylamine (OAm) and Trioctylphosphine (TOP) concentrations, temperature, time and the presence or absence of a moderate temperature soak step to facilitate formation of Ni and/or Ni-P amorphous nanoparticle intermediates.

New CoxFe2-xP nanoparticles (0 ≤ x ≤ 2), Co2-xMnxP …


New Chemistry For The Growth Of First-Row Transition Metal Films By Atomic Layer Deposition, Joseph Peter Klesko Jan 2016

New Chemistry For The Growth Of First-Row Transition Metal Films By Atomic Layer Deposition, Joseph Peter Klesko

Wayne State University Dissertations

Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the …


Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang Jan 2013

Synthesis And Characterization Of Transition Metal Arsenide Nanocrystals And The Metastability And Magneto-Structural Phase Transition Behavior Of Mnas Nanocrystals, Yanhua Zhang

Wayne State University Dissertations

This dissertation study focuses on (1) probing the magneto-structural phase transformation in nanoscale MnAs; (2) evaluation of the size-dependent phase stability of type-B MnAs (prepared by rapid injection); and (3) developing a general synthetic method for transition metal arsenide nanoparticles.

Discrete MnAs nanoparticles that adopt different structures at room temperature (type-A, α-structure and type-B, β-structure) have been prepared by the solution-phase arrested precipitation method. Atomic pair distribution and Rietveld refinement were employed on synchrotron data to explore the structural transitions of the bulk and nanoparticle samples, and these results were compared to AC magnetic susceptibility measurements of the samples. The …


New Precursors And Chemistry For The Growth Of Transition Metal Films By Atomic Layer Deposition, Thomas Joseph Knisley Jan 2012

New Precursors And Chemistry For The Growth Of Transition Metal Films By Atomic Layer Deposition, Thomas Joseph Knisley

Wayne State University Dissertations

The advancing complexity of advanced microelectronic devices is placing rigorous demands on currently used PVD and CVD deposition techniques. The ALD deposition method is proposed to meet the film thickness and conformality constraints needed by the semiconductor industry in future manufacturing processes. Unfortunately, there is a limited number of chemical precursors available that have high thermal stability, reactivity, and vapor pressure suitable for ALD film growth to occur. These properties collectively contribute to the lack of suitable transition metal precursors available for use in ALD. In this thesis, we report the discovery of a series of novel transition metal diazadienate …


Metal Chalcogenide Nanoparticle Gel Networks: Their Formation Mechanism And Application For Novel Material Generation And Heavy Metal Remediation Via Cation Exchange Reactions, Irina Ramona Pala Jan 2012

Metal Chalcogenide Nanoparticle Gel Networks: Their Formation Mechanism And Application For Novel Material Generation And Heavy Metal Remediation Via Cation Exchange Reactions, Irina Ramona Pala

Wayne State University Dissertations

METAL CHALCOGENIDE NANOPARTICLE GEL NETWORKS: THEIR FROMATION MECHANISM AND APPLICATION FOR NOVEL MATERIAL GENERATION AND HEAVY METAL REMEDIATION VIA CATION EXCHANGE REACTIONS

by

IRINA R. PALA

February 2012

Advisor: Dr. Stephanie L. Brock

Major: Chemistry

Degree: Doctor of Philosophy

The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions …