Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

Theses/Dissertations

2014

Articles 1 - 24 of 24

Full-Text Articles in Chemistry

Production And Applications Of Formaldehyde-Free Phenolic Resins Using 5-Hydroxymethylfurfural Derived From Glucose In-Situ, Yongsheng Zhang Dec 2014

Production And Applications Of Formaldehyde-Free Phenolic Resins Using 5-Hydroxymethylfurfural Derived From Glucose In-Situ, Yongsheng Zhang

Electronic Thesis and Dissertation Repository

The phenol-formaldehyde (PF) resin manufacturing industry is facing a growing challenge with respect to concerns over human health, due to the use of carcinogenic formaldehyde and sustainability due to the use of petroleum-based phenol in PF resin manufacture. Glucose and its derivative, 5-hydroxymethylfurfural (5-HMF), have proven to be potential substitutes for formaldehyde in the synthesis of phenolic novolac resins.

This thesis investigated a number of glucose and 5-HMF resin systems including the curing of phenol-glucose novolac resin (PG) with a bis-phenol-A type epoxy. The curing process was modeled according to the Sestak-Berggren equation (S, B) using Málek methods. This was …


Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley Dec 2014

Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley

Dissertations

The advent of controlled radical polymerization (CRP) techniques, along with advancements in facile conjugation chemistry, now allow synthetic tailoring of precise, polymeric architectures necessary for drug/gene delivery. Reversible addition- fragmentation chain transfer (RAFT) polymerization and its aqueous counterpart (aRAFT) afford quantitative control over key synthetic parameters including block length, microstructure, and placement of structo-pendent and structo-terminal functionality for conjugation of active agents and targeting moieties. The relevance of water-soluble and amphiphilic (co)polymers synthesized by RAFT for in vitro delivery of therapeutics in biological fluids is an especially attractive feature. In many cases, polymerization, binding, conjugation, …


Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley Dec 2014

Spectroscopic Investigation Of The Chemical And Electronic Properties Of Chalcogenide Materials For Thin-Film Optoelectronic Devices, Kimberly Horsley

UNLV Theses, Dissertations, Professional Papers, and Capstones

Chalcogen-based materials are at the forefront of technologies for sustainable energy production. This progress has come only from decades of research, and further investigation is needed to continue improvement of these materials.

For this dissertation, a number of chalcogenide systems were studied, which have applications in optoelectronic devices, such as LEDs and Photovoltaics. The systems studied include Cu(In,Ga)Se2 (CIGSe) and CuInSe2 (CISe) thin-film absorbers, CdTe-based photovoltaic structures, and CdTe-ZnO nanocomposite materials. For each project, a sample set was prepared through collaboration with outside institutions, and a suite of spectroscopy techniques was employed to answer specific questions about the system. These …


Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang Nov 2014

Functional Nanocomposites From Self-Assembly Of Block Copolymers With Nanoparticles, Xinyu Wang

Doctoral Dissertations

This dissertation studied the proper distribution and location control of nanoparticles (NPs) within block copolymer (BCP) templates. A facile ligand exchange reaction was introduced for the hydrophilic magnetic NPs (MNPs) that are readily dispersed in polar solvents with outstanding stability. Small molecule ligands were selected to associate strongly with particle surfaces, provide hydrophilic termini for polarity matching with polar solvents, and offer the potential for hydrogen-bonding interactions to facilitate NP incorporation into polymers. Areal ligand densities of NPs indicated a significant increase in the ligand coverage after the exchange reaction. Hydrophilic MNPs were shown to drive the self-assembly of BCPs …


Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh Nov 2014

Engineering Surface Functionality Of Nanoparticles For Biological Applications, Yi-Cheun Yeh

Doctoral Dissertations

Engineering the surface functionality of nanomaterials is the key to investigate the interactions between nanomaterials and biomolecules for potent biological applications such as therapy, imaging and diagnostics. My research has been orientted to engineer both of the surface monolayers and core materials to fabricate surface-functionalized nanomaterials through the synergistic multidisciplinary approach that combine organic chemistry, materials science and biology. This thesis illustrates the design and synthesis of the surface-funcitonalized quantum dots (QDs) and gold nanoparticles (AuNPs) for the fundamental studies and practical applications. For QDs, A new class of cationic QDs with quaternary ammonium derivatives was synthesized to provide permanent …


Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph Nov 2014

Patterning And Mechanical Analysis Of Fiber-Based Materials, Samuel A. Pendergraph

Doctoral Dissertations

The ability to define and control the topography of a surface has been studied extensively due to its importance in a wide variety of applications. The control of a non-planar topography would be very valuable since a number of structures that are pervasive in artificial applications (e.g. fibers, lenses) are curved interfaces. This potential of enabling applications that incorporate non-planar geometries was the motivation for this thesis. The first study of this thesis comprises the study of patterning the circumference of micrometer sized fibers. Specifically, a unique technique was described to pattern the fiber with a periodic array of colloids. …


High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min Oct 2014

High-Purity Gallium Analysis By Inductively Coupled Plasma Mass Spectrometry, Kyungjean Min

Open Access Theses

The mobility of Two-dimensional Electron Gas in AlGaAs/GaAs heterostructures that are grown in the Molecular Beam Epitaxy (MBE) can be increased by purification of the gallium used to grow the films. To attain 200 million cm2/Vs mobility, the impurity concentration of gallium should be reduced to below 1 ppb. The commercial 7N (99.99999%) gallium with 100 ppb total impurity is currently used in the MBE at Purdue University and is being purified by zone refining. To evaluate the commercial 7N gallium and establish the methodology for the impurity measurement after zone refining, germanium, iron, and zinc in 6N and 7N …


Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick Aug 2014

Molecular Engineering Strategies For The Design And Synthesis Of New Organic Photovoltaic Materials, Paul J. Homnick

Doctoral Dissertations

Dramatic improvements in organic photovoltaic device efficiency can be obtained by optimizing spectral absorbance and frontier molecular orbital (FMO) energies, increasing solid state exciton/charge mobility, and utilizing p-/n-type nanoarchitecture. Combining all of these properties into a new material presents a considerable synthetic challenge because potential commercial applications require materials that are high-performance and inexpensive. Thus, it is advantageous to design new materials using a versatile, modular synthetic approach that allows each design criterion to be engineered individually, in a synthetically efficient manner. Several strategies were successfully pursued using simple interchangeable electron donor and acceptor components as functional modules, which …


Creasing Instability Of Hydrogels And Elastomers, Dayong Chen Aug 2014

Creasing Instability Of Hydrogels And Elastomers, Dayong Chen

Doctoral Dissertations

CREASING INSTABILITY OF HYDROGELS AND ELASTOMERS MAY 2014 DAYONG CHEN, B.S., TIANJIN UNIVERISTY M.S., TIANJIN UNIVERSITY M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ryan C. Hayward Soft polymers placed under compressive stress can undergo an elastic creasing instability in which sharp folds spontaneously form on the free surfaces. This process may play an important role in contexts as diverse as brain morphogenesis, failure of tires, and electrical breakdown of soft polymer actuators. While the creasing instability has been used for collotype printing since as early as the 1850s, the scientific appreciation of this instability …


Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin Aug 2014

Structural Dynamics And Charge Transport In Room Temperature Ionic Liquids, Philip James Griffin

Doctoral Dissertations

Room temperature ionic liquids are an important class of materials due to their chemical tunability and numerous advantageous physicochemical properties. As a result, ionic liquids are currently being investigated for use in a wide array of chemical and electrochemical applications. Despite their great potential, however, the relationship between the chemical structure and physicochemical properties of ionic liquids is not well understood.

To this end, this dissertation presents experimental studies of the reorientational structural dynamics and charge transport properties of a variety of room temperature ionic liquids using quasielastic light scattering spectroscopy and broadband dielectric spectroscopy.

Studies of a series of …


Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash Jul 2014

Preparation & Characterization Of High Purity Cu2 Znsn(Sxse1-X)4 Nanoparticles, Bethlehem G. Negash

Open Access Theses

Research in thin film solar cells applies novel techniques to synthesize cost effective and highly efficient absorber materials in order to generate electricity directly from solar energy. Of these materials, copper zinc tin sulfoselenide (Cu2ZnSn(SxSe1-x) 4) nanoparticles have shown great promise in solar cell applications due to optimal material properties as well as low cost & relative abundance of materials.1,2 Sulfoselenide nanoparticles have also a broader impact in other industries including electronics3, LED 4, and biomedical research5. Of the many routes of manufacturing these class of semiconductors, …


Synthesis, Characterization And Mechanistic Studies Of Biomolecules@Mesomofs, Yao Chen Jun 2014

Synthesis, Characterization And Mechanistic Studies Of Biomolecules@Mesomofs, Yao Chen

USF Tampa Graduate Theses and Dissertations

Encapsulation of biomolecules is of great interest to research advances related to biology, physiology, immunology, and biochemistry, as well as industrial and biomedical applications such as drug delivery, biocatalysis, biofuel, food and cosmetics. Encapsulation provides functional characteristics that are not fulfilled by free biomolecules and stabilizes the fragile biomolecules. In terms of biocatalysis, solid support can often enhance the stability of enzymes, as well as facilitate separation and recovery for reuse while maintaining activity and selectivity. Various kinds of materials have been used for encapsulation of biomolecules, among which, porous materials are an important group. Metal-organic frameworks (MOFs) have attracted …


Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark May 2014

Ab Initio Studies Of Proton Transport In Proton Exchange Membranes, Jeffrey Keith Clark

Doctoral Dissertations

A molecular-level understanding of the factors that contribute to transport properties of proton exchange membranes (PEMs) for fuel cell applications is needed to aid in the development of superior membrane materials. Ab initio electronic structure calculations were undertaken on various PEM ionomer fragments to explore the effects of local hydration, side chain connectivity, protogenic group separation, and specific side chain chemistry on proton dissociation and transfer at low hydration. Cooperative interactions between both intra- and inter-molecular acidic groups and hydrogen bond connectivity were found to enhance proton dissociation at very low degrees of hydration. The energetics associated with proton transfer …


Wetting, Superhydrophobicity, And Icephobicity In Biomimetic Composite Materials, Vahid Hejazi May 2014

Wetting, Superhydrophobicity, And Icephobicity In Biomimetic Composite Materials, Vahid Hejazi

Theses and Dissertations

Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range …


Homochiral Metal-Organic Materials: Design, Synthetic And Enantioseletive Separation, Shi-Yuan Zhang May 2014

Homochiral Metal-Organic Materials: Design, Synthetic And Enantioseletive Separation, Shi-Yuan Zhang

USF Tampa Graduate Theses and Dissertations

Owing to the growing demand for enantiopurity in biological and chemical processes, tremendous efforts have been devoted to the synthesis of homochiral metal-organic materials (MOMs) because of their potential applications in chiral separation and asymmetric catalysis. In this dissertation, the synthetic strategies for homochiral MOMs are discussed keeping the focus on their applications. Two distinct approaches have been taken to synthesize chiral structures with different topologies and accessible cavities. The chiral MOMs have been utilized in enantioselective separation of racemates.

Chiral variants of the prototypal metal-organic framework MOF-5, δ-CMOF-5 and [lambda]-CMOF-5, have been synthesized by preparing MOF-5 in the presence …


Study Of The Structure-Property Relationships That Determine The Effects Of Latexes And Starch Containing Latex Emulsions On The Performance Of The Barrier Coatings (Sub-Coat) For Paper, Joanna Marie Monfils May 2014

Study Of The Structure-Property Relationships That Determine The Effects Of Latexes And Starch Containing Latex Emulsions On The Performance Of The Barrier Coatings (Sub-Coat) For Paper, Joanna Marie Monfils

Master's Theses

The history of carbonless paper dates back to the 1940s. Before this, a carbon copy sheet was needed between sheets of paper to be able to produce one or more copies simultaneously during writing. The pressure from a pen or typewriter would help deposit the ink of the carbon paper onto the blank sheet of paper under the original written sheet to create a “carbon copy.” This method did however, have its disadvantages. Not only did it produce a limited number of copies, but it was also a messy process. So came the creative process of using microencapsulated dyes to …


Investigation Of Energy Alignment Models At Polymer Interfaces, Wenfeng Wang May 2014

Investigation Of Energy Alignment Models At Polymer Interfaces, Wenfeng Wang

USF Tampa Graduate Theses and Dissertations

The presented study investigated the Induced Density of Interface States (IDIS) model at different polymer interfaces by using photoemission spectroscopy in combination with electrospray deposition.

In recent years, organic electronics have attracted considerable attention due to their advantages of low-cost and easy-fabrication. The performance of such devices crucially depends on the energy barrier that controls the interface charge transfer. A significant effort has been made to explore the mechanisms that determine the direction and magnitude of charge transfer barriers in these devices. As a result of this effort, the IDIS model was developed to predict the energy alignment at metal/organic …


Ionic Copolymers For Alkaline Anion Exchange Membrane Fuel Cells (Aaemfcs), Tsung-Han Tsai Apr 2014

Ionic Copolymers For Alkaline Anion Exchange Membrane Fuel Cells (Aaemfcs), Tsung-Han Tsai

Doctoral Dissertations

The advantages of alkaline anion exchange membrane fuel cells (AAEMFCs) over proton exchange membrane fuel cells is the motivation for this dissertation. The objectives of this dissertation were to develop durable membranes with high anion conductivity and an understanding of the ion conductivity relationship with morphology. The research results presented in this dissertation focuses on developing different architectures of ionic copolymers including diblock copolymers and random copolymers for AAEMFCs. A novel, and stable cobaltocenium cation, was incorporated into polymer for stable AAEM. Because of its 18 electron closed valence-shell configuration, the cobaltocenium cation is promising for use in AAEMFC. Two …


Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu Apr 2014

Effect Of Multivalent Ions On The Swelling And Mechanical Behavior Of Superabsorbent Polymers (Saps) For Mitigation Of Mortar Autogenous Shrinkage, Qian Zhu

Open Access Theses

The chemical and physical structure-property relationships of model superabsorbent polymer (SAP) hydrogels were characterized with respect to swelling behavior and mechanical properties in different ionic solutions (Na+ , Ca2+ , and Al3+ ). The model hydrogels were composed of poly(sodium acrylate-acrylamide) (PANa-PAM) copolymer with varying concentrations of PANa (0, 17, 33, 67, and 83 wt.%) and covalent crosslinking densities of 1, 1.5, and 2 wt.%. By synthesizing the hydrogels in-house, systems with independently tunable amounts of covalent crosslinking and anionic functional groups were created, allowing for the relative effects of covalent and ionic crosslinking on the properties of the hydrogels …


[M3(Μ3-O)(O2cr)6] And Related Trigonal Prisms: Versatile Molecular Building Blocks For 2-Step Crystal Engineering Of Functional Metal-Organic Materials, Alexander Schoedel Mar 2014

[M3(Μ3-O)(O2cr)6] And Related Trigonal Prisms: Versatile Molecular Building Blocks For 2-Step Crystal Engineering Of Functional Metal-Organic Materials, Alexander Schoedel

USF Tampa Graduate Theses and Dissertations

Metal-organic materials (MOMs) assembled from metal-based building blocks and organic linkers have attracted much interest due to their large pore dimensions and their enormous structural diversity. In comparison to their inorganic counterparts (zeolites), these crystalline materials can be easily modified to tailor pore dimensions and functionality for specifically targeted properties.

The work presented herein encompasses the development of a synthetic 2-step process for the construction of novel families of MOMs or 'platforms' and allow us exquisite design and control over the resulting network topologies. Examples of cationic mesoporous structures were initially exploited, containing carboxylate based centers connected by metal-pyridine bonds. …


Design, Synthesis And Applications Of Fluorescent And Electrochemical Probes, Giri K. Vegesna Jan 2014

Design, Synthesis And Applications Of Fluorescent And Electrochemical Probes, Giri K. Vegesna

Dissertations, Master's Theses and Master's Reports - Open

“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and …


Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu Jan 2014

Degradation Of High Voltage Glass Fiber-Reinforced Polymer Matrix Composites By Aggressive Environmental Conditions, Tianyi Lu

Electronic Theses and Dissertations

Polymer matrix composites reinforced with either E glass or ECR glass fibers-reinforced are used in a variety of high voltage electrical applications because of their advantages like lower weight and cost. However, they can be damaged by aggressive in-service conditions such as high temperature, ultraviolet radiation, moisture, ozone and corrosive environments. Different degradation mechanisms can develop in high voltage PMCs under those extreme environments, which, in turn, can affect the long term structural durability of the composites. A set of PMCs reinforced with ECR-glass and E-glass fibers embedded in four different resins has been investigated in this study. In addition, …


Alkali Promoted Molybdenum (Iv) Sulfide Based Catalysts, Development And Characterization For Alcohol Synthesis From Carbon Monoxide And Hydrogen, Belinda Delilah Molina Jan 2014

Alkali Promoted Molybdenum (Iv) Sulfide Based Catalysts, Development And Characterization For Alcohol Synthesis From Carbon Monoxide And Hydrogen, Belinda Delilah Molina

Open Access Theses & Dissertations

For more than a century transition metal sulfides (TMS) have been the anchor of hydro-processing fuels and upgrading bitumen and coal in refineries worldwide. As oil supplies dwindle and environmental laws become more stringent, there is a greater need for cleaner alternative fuels and/or synthetic fuels. The depletion of oil reserves and a rapidly increasing energy demand worldwide, together with the interest to reduce dependence on foreign oil makes alcohol production for fuels and chemicals via the Fischer Tropsch synthesis (FTS) very attractive. The original Fischer-Tropsch (FT) reaction is the heart of all gas-to-liquid technologies; it creates higher alcohols and …


Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome Jan 2014

Addressing Public Health Risks Of Persistent Pollutants Through Nutritional Modulation And Biomimetic Nanocomposite Remediation Platforms, Bradley J. Newsome

Theses and Dissertations--Chemistry

Due to their relative chemical stability and ubiquity in the environment, chlorinated organic contaminants such as polychlorinated biphenyls (PCBs) pose significant health risks and enduring remediation challenges. Engineered nanoparticles (NPs) provide a novel platform for sensing/remediation of these toxicants, in addition to the growing use of NPs in many industrial and biomedical applications, but there remains concern for their potential long-term health effects. Research highlighted herein also represents a transdisciplinary approach to address human health challenges associated with exposure to PCBs and NPs. The objectives of this dissertation research are two-fold, 1) to develop effective methods for capture/sensing and remediation …