Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Chemistry

Engineering Multifunctional Silicon Nanostructures From Biorenewable Cellulose Nanocrystals, Nancy Chen May 2024

Engineering Multifunctional Silicon Nanostructures From Biorenewable Cellulose Nanocrystals, Nancy Chen

All Dissertations

The imperative search for alternative materials to address the pressing demand for advance energy storage is underscored by the escalating environmental predicaments. Lithium-ion batteries (LIBs) with graphite anodes have become the benchmark in energy storage; however, they are approaching a saturation point in terms of energy density. Silicon emerges as a promising contender to supplant graphite, owing to its profuse availability, cost-effectiveness, and impressive specific capacity of 4200 mAh g-1. By integrating silicon anodes, LIBs stand to undergo a radical transformation, markedly diminishing in weight and size, thus heralding a novel wave of compact, lightweight energy storage systems. …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …


Synthesis And Molecular Processes Governing Self-Healing Polymeric Materials, Siyang Wang May 2022

Synthesis And Molecular Processes Governing Self-Healing Polymeric Materials, Siyang Wang

All Dissertations

Self-healing polymers capable of recovering from physical damages are promising materials for advanced technologies. In these studies, we developed routes to achieve self-healable properties in acrylic-based copolymers that rely on non-covalent dipolar interactions present in essentially all polymeric materials. Using a combination of spectroscopic tools, thermo-mechanical analysis, and molecular dynamic (MD) simulations, these studies have shown that dipolar interactions lead to conformational changes of macromolecular segments which, in turn, result in self-healing without external intervention. This dissertation also describes the development of novel self-healable acrylic-based covalent adaptable networks (CANs) that combine reprocessing and self-healing properties. The utilization of dipolar interactions …